Lysosomal Storage-Independent Fabry Disease Variants with α-Galactosidase A Misprocessing-Induced ER Stress and the Unfolded Protein Response
Status Publisher Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40112790
PubMed Central
PMC12121966
DOI
10.1159/000545388
PII: 000545388
Knihovny.cz E-zdroje
- Klíčová slova
- ER stress activation, Misfolding of α-galactosidase A, Non-classic Fabry disease, Treatment, Unfolding protein response activation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Clinical findings in Fabry disease have classically been attributed to loss-of-function variants in the GLA gene that result in α-galactosidase A deficiency, intracellular accumulation of globotriaosylceramides and clinical manifestations. However, over time, increasing number of patients have been identified with GLA variants causing either non-classic Fabry disease or having unclear clinical effects. SUMMARY: Searching for additional etiologic and lysosomal storage-independent factors, investigators have recently identified that certain missense GLA variants not only affect enzymatic activity, but also encode for misfolded α-galactosidase A that itself induces chronic endoplasmic reticulum stress and the unfolded protein response. Thus, Fabry disease pathogenesis may be caused by decreased enzymatic activity as well as cellular toxicity from accumulation of the misfolded α-galactosidase A protein, with the contribution of each factor determined by the type of the genetic variant and host factors. KEY MESSAGES: Defective proteostasis and misfolding of certain missense α-galactosidase A variants induce chronic endoplasmic reticulum stress and the unfolded protein response that may contribute to intra-familial and inter-familial variation in disease penetrance and clinical expressivity. Pharmacologic modulation of defective proteostasis may have therapeutic implications in Fabry disease.
Zobrazit více v PubMed
Niemi MEK, Martin HC, Rice DL, Gallone G, Gordon S, Kelemen M, et al. . Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature. 2018;562(7726):268–71. PubMed PMC
Breen G. Common genetic variants contribute more to rare diseases than previously thought. Nature. 2024;636(8042):304–5. PubMed
Fabry J. Ein Beitrag zur Kenntniss der Purpura haemorrhagica nodularis (Purpura papulosa haemorrhagica Hebrae). Arch F Dermat. 1898;43(1):187–200.
Anderson W. A case of “ANGEIO-KERATOMA”. Br Art J Dermatology. 1898;X:113–17.
Wise D, Wallace HJ, Jellinek EH. Angiokeratoma corporis diffusum. A clinical study of eight affected families. Q J Med. 1962;31:177–206. PubMed
Opitz JM, Stiles FC, Wise D, Race RR, Sanger R, Von Gemmingen GR, et al. . The genetics of angiokeratoma corporis diffusum (Fabry's Disease) and Its Linkage Relations with the Xg Locus. Am J Hum Genet. 1965;17(4):325–42. PubMed PMC
Sweeley CC, Klionsky B. Fabry's Disease: Classification as a Sphingolipidosis and Partial Characterization of a Novel Glycolipid. J Biol Chem. 1963;238(9):3148–50. PubMed
Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry's disease. Ceramidetrihexosidase deficiency. N Engl J Med. 1967;276(21):1163–7. PubMed
Calhoun DH, Bishop DF, Bernstein HS, Quinn M, Hantzopoulos P, Desnick RJ. Fabry disease: isolation of a cDNA clone encoding human alpha-galactosidase A. Proc Natl Acad Sci U S A. 1985;82(21):7364–8. PubMed PMC
Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ. Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci U S A. 1986;83(13):4859–63. PubMed PMC
Bishop DF, Kornreich R, Desnick RJ. Structural organization of the human alpha-galactosidase A gene: further evidence for the absence of a 3' untranslated region. Proc Natl Acad Sci U S A. 1988;85(11):3903–7. PubMed PMC
Bernstein HS, Bishop DF, Astrin KH, Kornreich R, Eng CM, Sakuraba H, et al. . Fabry disease: six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene. J Clin Investig. 1989;83(4):1390–9. PubMed PMC
Neufeld EF. Enzyme replacement therapy: a brief history. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 Years of FOS. Oxford; 2006. PubMed
Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, et al. . Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. N Engl J Med. 2001;345(1):9–16. PubMed
Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, et al. . Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743–9. PubMed
Germain DP, Arad M, Burlina A, Elliott PM, Falissard B, Feldt-Rasmussen U, et al. . The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease: a systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126(3):224–35. PubMed
McCafferty EH, Scott LJ. Migalastat: A Review in Fabry Disease. Drugs. 2019;79(5):543–54. PubMed PMC
Benjamin ER, Della Valle MC, Wu X, Katz E, Pruthi F, Bond S, et al. . The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med. 2017;19(4):430–8. PubMed PMC
Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. . Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375(6):545–55. PubMed
Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. . Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288–96. PubMed PMC
Lenders M, Nordbeck P, Kurschat C, Eveslage M, Karabul N, Kaufeld J, et al. . Treatment of Fabry Disease management with migalastat-outcome From a prospective 24 Months Observational Multicenter Study (FAMOUS). Eur Heart J Cardiovasc Pharmacother. 2022;8(3):272–81. PubMed
Lenders M, Stappers F, Niemietz C, Schmitz B, Boutin M, Ballmaier PJ, et al. . Mutation-specific Fabry disease patient-derived cell model to evaluate the amenability to chaperone therapy. J Med Genet. 2019;56(8):548–56. PubMed
Müntze J, Gensler D, Maniuc O, Liu D, Cairns T, Oder D, et al. . Oral Chaperone Therapy Migalastat for Treating Fabry Disease: Enzymatic Response and Serum Biomarker Changes After 1 Year. Clin Pharmacol Ther. 2019;105(5):1224–33. PubMed PMC
Lenders M, Nordbeck P, Kurschat C, Karabul N, Kaufeld J, Hennermann JB, et al. . Treatment of fabry’s disease with migalastat: outcome From a Prospective Observational Multicenter Study (FAMOUS). Clin Pharmacol Ther. 2020;108(2):326–37. PubMed
Yasuda M, Huston MW, Pagant S, Gan L, St Martin S, Sproul S, et al. . AAV2/6 Gene Therapy in a Murine Model of Fabry Disease Results in Supraphysiological Enzyme Activity and Effective Substrate Reduction. Mol Ther Methods Clin Dev. 2020;18:607–19. PubMed PMC
Sawada T, Kido J, Sugawara K, Nakamura K. High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review. Diagnostics. 2021;11(10):1779. PubMed PMC
Klein A, Klug K, Breyer M, Grüner J, Medala VK, Nordbeck P, et al. . Genetic variants of unknown significance in alpha-galactosidase A: Cellular delineation from Fabry disease. J Inherit Metab Dis. 2024;47(4):805–17. PubMed
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. . The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43. PubMed PMC
Schiffmann R, Fuller M, Clarke LA, Aerts JM. Is it Fabry disease? Genet Med. 2016;18(12):1181–5. PubMed
Houge G, Langeveld M, Oliveira JP. GLA insufficiency should not be called Fabry disease. Eur J Hum Genet. 2025;33(3):263–5. PubMed PMC
Elsaid HOA, Furriol J, Blomqvist M, Diswall M, Leh S, Gharbi N, et al. . Reduced alpha-galactosidase A activity in zebrafish (Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep. 2022;31:100851. PubMed PMC
Elsaid HOA, Tjeldnes H, Rivedal M, Serre C, Eikrem Ø, Svarstad E, et al. . Gene Expression Analysis in gla-Mutant Zebrafish Reveals Enhanced Ca(2+) Signaling Similar to Fabry Disease. Int J Mol Sci. 2022;24(1):358. PubMed PMC
Lacoste J, Haghighi M, Haider S, Reno C, Lin ZY, Segal D, et al. . Pervasive mislocalization of pathogenic coding variants underlying human disorders. Cell. 2024;187(23):6725–41.e13. PubMed PMC
Phillips BP, Gomez-Navarro N, Miller EA. Protein quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2020;65:96–102. PubMed PMC
Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol. 2022;75:102074. PubMed
Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529(7586):326–35. PubMed
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol. 2025;26(3):193–212. PubMed
Kim WK, Choi W, Deshar B, Kang S, Kim J. Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases. Mol Cells. 2023;46(4):191–9. PubMed PMC
Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94. PubMed PMC
Germain DP, Oliveira JP, Bichet DG, Yoo HW, Hopkin RJ, Lemay R, et al. . Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: a consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J Med Genet. 2020;57(8):542–51. PubMed PMC
Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, et al. . Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J. 2007;406(2):285–95. PubMed PMC
Živná M, Dostálová G, Barešová V, Mušálková D, Kuchař L, Asfaw B, et al. . AGAL misprocessing-induced ER stress and the unfolded protein response: lysosomal storage-independent mechanism of Fabry disease pathogenesis? bioRxiv. 2022.
Živná M, Dostálová G, Barešová V, Mušálková D, Svojšová K, Meiseles D, et al. . Misprocessing of Alpha-Galactosidase A, Endoplasmic Reticulum Stress, and the Unfolded Protein Response. J Am Soc Nephrol. 2024. in press. PubMed PMC
Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S, Rampoldi L, et al. . Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5(1):60. PubMed
Živná M, Kidd KO, Barešová V, Hůlková H, Kmoch S, Bleyer AJ Sr. Autosomal dominant tubulointerstitial kidney disease: A review. Am J Med Genet C Semin Med Genet. 2022;190(3):309–24. PubMed PMC
Kim Y, Li C, Gu C, Fang Y, Tycksen E, Puri A, et al. . MANF stimulates autophagy and restores mitochondrial homeostasis to treat autosomal dominant tubulointerstitial kidney disease in mice. Nat Commun. 2023;14(1):6493. PubMed PMC
Bazua-Valenti S, Brown MR, Zavras J, Riedl Khursigara M, Grinkevich E, Sidhom EH, et al. . Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors. J Clin Investig. 2024;134(24):e180347. PubMed PMC
Dvela-Levitt M, Kost-Alimova M, Emani M, Kohnert E, Thompson R, Sidhom EH, et al. . Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019;178(3):521–35.e23. PubMed
Živná M, Kidd K, Zaidan M, Vyleťal P, Barešová V, Hodaňová K, et al. . An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98(6):1589–604. PubMed PMC
Ishii S, Kase R, Okumiya T, Sakuraba H, Suzuki Y. Aggregation of the inactive form of human alpha-galactosidase in the endoplasmic reticulum. Biochem Biophys Res Commun. 1996;220(3):812–5. PubMed
Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5(1):112–5. PubMed
Yasuda M, Shabbeer J, Benson SD, Maire I, Burnett RM, Desnick RJ. Fabry disease: characterization of alpha-galactosidase A double mutations and the D313Y plasma enzyme pseudodeficiency allele. Hum Mutat. 2003;22(6):486–92. PubMed
Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M. Misfolding of Lysosomal alpha-Galactosidase a in a Fly Model and Its Alleviation by the Pharmacological Chaperone Migalastat. Int J Mol Sci. 2020;21(19):7397. PubMed PMC
Consolato F, De Fusco M, Schaeffer C, Pieruzzi F, Scolari F, Gallieni M, et al. . α-Gal A missense variants associated with Fabry disease can lead to ER stress and induction of the unfolded protein response. Mol Genet Metab Rep. 2022;33:100926. PubMed PMC
Riillo C, Bonapace G, Moricca MT, Sestito S, Salatino A, Concolino D. c.376A>G, (p.Ser126Gly) Alpha-Galactosidase A mutation induces ER stress, unfolded protein response and reduced enzyme trafficking to lysosome: Possible relevance in the pathogenesis of late-onset forms of Fabry Disease. Mol Genet Metab. 2023;140(3):107700. PubMed
Bossio S, Perrotta ID, Lofaro D, La Russa D, Rago V, Bonofiglio R, et al. . The Missense Variant in the Signal Peptide of alpha-GLA Gene, c.13 A/G, Promotes Endoplasmic Reticular Stress and the Related Pathway’s Activation. Genes. 2024;15(7):947. PubMed PMC
Sawkar AR, Schmitz M, Zimmer KP, Reczek D, Edmunds T, Balch WE, et al. . Chemical chaperones and permissive temperatures alter localization of Gaucher disease associated glucocerebrosidase variants. ACS Chem Biol. 2006;1(4):235–51. PubMed
Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M. Unfolded protein response in Gaucher disease: from human to Drosophila. Orphanet J Rare Dis. 2013;8:140. PubMed PMC
Wang F, Segatori L. Remodeling the proteostasis network to rescue glucocerebrosidase variants by inhibiting ER-associated degradation and enhancing ER folding. PLoS One. 2013;8(4):e61418. PubMed PMC
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease - more than just a rare lipid storage disease. J Mol Med. 2022;100(4):499–518. PubMed
Onal G, Yalçın-Çakmaklı G, Özçelik CE, Boussaad I, Şeker UÖŞ, Fernandes HJR, et al. . Variant-specific effects of GBA1 mutations on dopaminergic neuron proteostasis. J Neurochem. 2024;168(9):2543–60. PubMed PMC
Pornsukjantra T, Saikachain N, Sutjarit N, Khongkrapan A, Tubsuwan A, Bhukhai K, et al. . An increase in ER stress and unfolded protein response in iPSCs-derived neuronal cells from neuronopathic Gaucher disease patients. Sci Rep. 2024;14(1):9177. PubMed PMC
Landi C, Luddi A, Bianchi L, Pannuzzo G, Pavone V, Piomboni P, et al. . Proteostasis network alteration in lysosomal storage disorders: Insights from the mouse model of Krabbe disease. J Neurosci Res. 2020;98(4):718–33. PubMed
Gros F, Muller S. The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol. 2023;19(6):366–83. PubMed
Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64. PubMed PMC
Pisani A, Wilson KM, Batista JL, Kantola I, Ortiz A, Politei J, et al. . Clinical outcomes in patients switching from agalsidase beta to migalastat: A Fabry Registry analysis. J Inherit Metab Dis. 2024;47(5):1080–95. PubMed
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med. 2024;30(1):40. PubMed PMC
Rozenfeld P, Feriozzi S. Pathogenesis of Organ Damage in Fabry Disease: The AGALopathy Pathogenetic Pathway. J Am Soc Nephrol. 2025. PubMed PMC