Clinical outcomes in patients switching from agalsidase beta to migalastat: A Fabry Registry analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Sanofi
PubMed
38961737
DOI
10.1002/jimd.12773
Knihovny.cz E-zdroje
- Klíčová slova
- Fabry disease, agalsidase beta, chaperone, enzyme replacement therapy (ERT), migalastat,
- MeSH
- 1-deoxynojirimycin * analogy a deriváty terapeutické užití aplikace a dávkování MeSH
- alfa-galaktosidasa * terapeutické užití MeSH
- dospělí MeSH
- enzymová substituční terapie metody MeSH
- Fabryho nemoc * farmakoterapie MeSH
- glykolipidy MeSH
- hodnoty glomerulární filtrace * MeSH
- izoenzymy * terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- registrace * MeSH
- sfingolipidy krev MeSH
- trihexosylceramidy metabolismus MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-deoxynojirimycin * MeSH
- agalsidase beta MeSH Prohlížeč
- alfa-galaktosidasa * MeSH
- globotriaosyl lysosphingolipid MeSH Prohlížeč
- globotriaosylceramide MeSH Prohlížeč
- glykolipidy MeSH
- izoenzymy * MeSH
- migalastat MeSH Prohlížeč
- sfingolipidy MeSH
- trihexosylceramidy MeSH
Fabry Registry data were analyzed among 83 agalsidase beta-treated patients with Fabry disease who switched to migalastat. Outcomes (estimated glomerular filtration rate [eGFR], urine protein-creatinine ratio [UPCR], plasma globotriaosylceramide [GL-3], plasma globotriaosylsphingosine [lyso-GL-3], interventricular septal wall thickness [IVST], left posterior wall thickness [LPWT], left ventricular mass index [LVMI]) were assessed using linear mixed models to estimate annual change over time in the pre- and postswitch periods. eGFR decreased throughout both periods (preswitch: -0.85 mL/min/1.73 m2/year; postswitch: -1.96 mL/min/1.73 m2/year; both p < 0.0001), with steeper decline postswitch (ppre/post = 0.01) in both classic and late-onset patients. UPCR increased significantly postswitch (ppre/post = 0.003) among classic patients and was stable in both periods among late-onset patients. GL-3 trajectories worsened postswitch across phenotypes (ppre/post = 0.0005 classic, 0.02 late-onset). LPWT was stable preswitch (0.07 mm/year, p = 0.25) and decreased postswitch (-0.51 mm/year, p = 0.0005; ppre/post = 0.0009), primarily among late-onset patients. IVST and LVMI slopes varied significantly by phenotype. Among classic patients, IVST and LVMI were stable and decreasing, respectively preswitch and increasing postswitch (ppre/post = 0.02 IVST, 0.01 LVMI). Among late-onset patients, IVST significantly decreased postswitch (ppre/post = 0.0003); LVMI was stable over time (ppre/post = 0.89). Ultimately, eGFR and GL-3 trajectories worsened postswitch across phenotypes, while UPCR and cardiac measures worsened among classic and stabilized/improved among late-onset patients. These findings indicate variability in long-term outcomes after switching from ERT to migalastat, underscoring the importance of careful monitoring.
Department of Medicine Universidad Autónoma de Madrid Madrid Spain
Department of Public Health University of Naples Federico 2 Naples Italy
Division of Medicine Turku University Hospital Turku University Turku Finland
General University Hospital Prague Czech Republic
Jiménez Díaz Foundation University Hospital and IIS Fundación Jiménez Díaz UAM Madrid Spain
Navitas Data Sciences Pottstown Pennsylvania USA
Zobrazit více v PubMed
Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. doi:10.1186/1750‐1172‐5‐30
Svarstad E, Marti HP. The changing landscape of Fabry disease. Clin J Am Soc Nephrol. 2020;15(4):569‐576. doi:10.2215/cjn.09480819
Arends M, Wanner C, Hughes D, et al. Characterization of classical and nonclassical Fabry disease: a multicenter study. J Am Soc Nephrol. 2017;28(5):1631‐1641. doi:10.1681/asn.2016090964
Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416‐427. doi:10.1016/j.ymgme.2018.02.014
Pieroni M, Moon JC, Arbustini E, et al. Cardiac involvement in Fabry disease: JACC review topic of the week. J Am Coll Cardiol. 2021;77(7):922‐936. doi:10.1016/j.jacc.2020.12.024
Izhar R, Borriello M, La Russa A, et al. Fabry disease in women: genetic basis, available biomarkers, and clinical manifestations. Genes. 2023;15(1):37. doi:10.3390/genes15010037
Wanner C, Arad M, Baron R, et al. European Expert Consensus Statement on therapeutic goals in Fabry disease. Mol Genet Metab. 2018;124(3):189‐203. doi:10.1016/j.ymgme.2018.06.004
Genzyme Corporation. Fabrazyme (agalsidase beta) summary of product characteristics. Accessed November 3, 2023. https://www.ema.europa.eu/en/documents/product-information/fabrazyme-epar-product-information_en.pdf
JCR and Sumitomo Dainippon pharma enter into marketing alliance for agalsidase beta BS I.V. infusion [JCR], for treatment of Fabry disease in Japan March 1, 2022. Accessed November 3, 2023. https://ssl4.eir-parts.net/doc/4552/tdnet/2091921/00.pdf
Takeda Pharmaceuticals. Replagal (agalsidase alfa) summary of product characteristics. Accessed November 3, 2023. https://www.ema.europa.eu/en/documents/product-information/replagal-epar-product-information_en.pdf
Chiesi Farmaceutici. Elfabrio (pegunigalsidase alfa) summary of product characteristics. Accessed November 3, 2023. https://www.ema.europa.eu/en/documents/product-information/elfabrio-epar-product-information_en.pdf
Riccio E, Pisani A. New insights in efficacy of different enzyme replacement therapy dosages in Fabry disease: switch studies data following agalsidase beta shortage. Clin Genet. 2023;103(3):371‐376. doi:10.1111/cge.14266
Krämer J, Lenders M, Canaan‐Kühl S, et al. Fabry disease under enzyme replacement therapy‐new insights in efficacy of different dosages. Nephrol Dial Transplant. 2018;33(8):1362‐1372. doi:10.1093/ndt/gfx319
Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study. J Med Genet. 2018;55(5):351‐358. doi:10.1136/jmedgenet‐2017‐104863
Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375(6):545‐555. doi:10.1056/NEJMoa1510198
Amicus Therapeutics Europe Limited. Galafold (migalastat) summary of product characteristics. Accessed November 3, 2023. https://www.ema.europa.eu/en/documents/product-information/galafold-epar-product-information_en.pdf
Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18‐month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288‐296. doi:10.1136/jmedgenet‐2016‐104178
Lenders M, Nordbeck P, Kurschat C, et al. Treatment of Fabry disease management with migalastat‐outcome from a prospective 24 months observational multicenter study (FAMOUS). Eur Heart J Cardiovasc Pharmacother. 2022;8(3):272‐281. doi:10.1093/ehjcvp/pvab025
Bichet DG, Torra R, Wallace E, et al. Long‐term follow‐up of renal function in patients treated with migalastat for Fabry disease. Mol Genet Metab Rep. 2021;28:100786. doi:10.1016/j.ymgmr.2021.100786
Amicus Therapeutics. Galafold (migalastat) US prescribing information. Accessed October 29, 2023. https://www.amicusrx.com/pi/galafold.pdf
Fan J‐Q, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal α–galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5(1):112‐115. doi:10.1038/4801
Benjamin ER, Della Valle MC, Wu X, et al. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med. 2017;19(4):430‐438. doi:10.1038/gim.2016.122
Bichet DG, Hopkin RJ, Aguiar P, et al. Consensus recommendations for the treatment and management of patients with Fabry disease on migalastat: a modified Delphi study. Front Med. 2023;10:1220637. doi:10.3389/fmed.2023.1220637
Oommen S, Zhou Y, Meiyappan M, Gurevich A, Qiu Y. Inter‐assay variability influences migalastat amenability assessments among Fabry disease variants. Mol Genet Metab. 2019;127(1):74‐85. doi:10.1016/j.ymgme.2019.04.005
Lenders M, Nordbeck P, Kurschat C, et al. Treatment of Fabry's disease with migalastat: outcome from a prospective observational multicenter study (FAMOUS). Clin Pharmacol Ther. 2020;108(2):326‐337. doi:10.1002/cpt.1832
Vanyo T, Pillai N, Ahmed A, Whitley CB. Comparison of therapeutic potential of ERT to chaperone therapy in I270T related Fabry disease. Mol Genet Metab. 2022;135(2):S123. doi:10.1016/j.ymgme.2021.11.327
Lenders M, Stappers F, Niemietz C, et al. Mutation‐specific Fabry disease patient‐derived cell model to evaluate the amenability to chaperone therapy. J Med Genet. 2019;56(8):548‐556. doi:10.1136/jmedgenet‐2019‐106005
Nowak A, Huynh‐Do U, Krayenbuehl PA, Beuschlein F, Schiffmann R, Barbey F. Fabry disease genotype, phenotype, and migalastat amenability: insights from a national cohort. J Inherit Metab Dis. 2020;43(2):326‐333. doi:10.1002/jimd.12167
Fernandes RM, Bento D, Marques N, et al. Challenges in Fabry disease: the combination of two individually amenable GLA variants may be nonamenable to migalastat. Future Cardiol. 2023;19(1):39‐43. doi:10.2217/fca‐2022‐0080
Riccio E, Zanfardino M, Ferreri L, et al. Switch from enzyme replacement therapy to oral chaperone migalastat for treating Fabry disease: real‐life data. Eur J Hum Genet. 2020;28(12):1662‐1668. doi:10.1038/s41431‐020‐0677‐x
Wanner C, Ortiz A, Wilcox WR, et al. Global reach of over 20 years of experience in the patient‐centered Fabry Registry: advancement of Fabry disease expertise and dissemination of real‐world evidence to the Fabry community. Mol Genet Metab. 2023;139(3):107603. doi:10.1016/j.ymgme.2023.107603
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604‐612. doi:10.7326/0003‐4819‐150‐9‐200905050‐00006
Lang RM, Badano LP, Mor‐Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1‐39.e14. doi:10.1016/j.echo.2014.10.003
Mosteller RD. Simplified calculation of body‐surface area. N Engl J Med. 1987;317(17):1098. doi:10.1056/nejm198710223171717
Desnick RJ, Chen R, Srinivasan R, Doheny DO, Bishop D. The Fabry disease genotype‐phenotype database (dbFGP): an international expert consortium. Mol Genet Metab. 2017;120(1):S41‐S42. doi:10.1016/j.ymgme.2016.11.082
Rombach SM, Dekker N, Bouwman MG, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802(9):741‐748. doi:10.1016/j.bbadis.2010.05.003
Lenders M, Stappers F, Brand E. In vitro and in vivo amenability to migalastat in Fabry disease. Mol Ther Methods Clin Dev. 2020;19:24‐34. doi:10.1016/j.omtm.2020.08.012
Müntze J, Gensler D, Maniuc O, et al. Oral chaperone therapy migalastat for treating Fabry disease: enzymatic response and serum biomarker changes after 1 year. Clin Pharmacol Ther. 2019;105(5):1224‐1233. doi:10.1002/cpt.1321
Germain DP, Brand E, Burlina A, et al. Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: a multicenter Fabry Registry study. Mol Genet Genomic Med. 2018;6(4):492‐503. doi:10.1002/mgg3.389
Gatterer C, Beitzke D, Graf S, et al. Long‐term monitoring of cardiac involvement under migalastat treatment using magnetic resonance tomography in Fabry disease. Life. 2023;13(5):1213. doi:10.3390/life13051213
Camporeale A, Bandera F, Pieroni M, et al. Effect of migalastat on cArdiac InvOlvement in FabRry DiseAse: MAIORA study. J Med Genet. 2023;60(9):850‐858. doi:10.1136/jmg‐2022‐108768
Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two‐dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29‐34. doi:10.1016/s0002‐9149(02)02381‐0
Bottini PB, Carr AA, Prisant LM, Flickinger FW, Allison JD, Gottdiener JS. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens. 1995;8(3):221‐228. doi:10.1016/0895‐7061(94)00178‐e
Yousef Z, Elliott PM, Cecchi F, et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis. Eur Heart J. 2013;34(11):802‐808. doi:10.1093/eurheartj/ehs166
Ambale Venkatesh B, Volpe GJ, Donekal S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi‐Ethnic Study of Atherosclerosis study. Hypertension. 2014;64(3):508‐515. doi:10.1161/hypertensionaha.114.03697
Weidemann F, Jovanovic A, Herrmann K, Vardarli I. Chaperone therapy in Fabry disease. Int J Mol Sci. 2022;23(3):1887.
Wu YS, Khanna R, Schmith V, et al. Migalastat tissue distribution: extrapolation from mice to humans using pharmacokinetic modeling and comparison with agalsidase beta tissue distribution in mice. Clin Pharmacol Drug Dev. 2021;10(9):1075‐1088. doi:10.1002/cpdd.941
Ishii S, Chang HH, Yoshioka H, et al. Preclinical efficacy and safety of 1‐deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther. 2009;328(3):723‐731. doi:10.1124/jpet.108.149054
Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 2015;23(7):1138‐1148. doi:10.1038/mt.2015.62
Porrini E, Ruggenenti P, Luis‐Lima S, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177‐190. doi:10.1038/s41581‐018‐0080‐9
Aakre KM, Tøndel C, Brun A, Svarstad E. The MDRD equation may mask decline of glomerular filtration rate in Fabry patients with normal or nearly normal kidney function. Clin Nephrol. 2009;71(2):118‐124. doi:10.5414/cnp71118
Echevarria L, Benistan K, Toussaint A, et al. X‐chromosome inactivation in female patients with Fabry disease. Clin Genet. 2016;89(1):44‐54. doi:10.1111/cge.12613
Madsen CV, Granqvist H, Petersen JH, et al. Age‐related renal function decline in Fabry disease patients on enzyme replacement therapy: a longitudinal cohort study. Nephrol Dial Transplant. 2019;34(9):1525‐1533. doi:10.1093/ndt/gfy357