Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO-VFN 64165
Ministerstvo Zdravotnictví Ceské Republiky
P30ES023515
NIEHS NIH HHS - United States
ES528805
Norges Forskningsråd
ASL18
Orentreich Foundation for the Advancement of Science
ASL32
Orentreich Foundation for the Advancement of Science
ASL21
Orentreich Foundation for the Advancement of Science
ASL24
Orentreich Foundation for the Advancement of Science
P30ES023515
NIEHS NIH HHS - United States
PubMed
36403077
PubMed Central
PMC9741510
DOI
10.1111/acel.13739
Knihovny.cz E-zdroje
- Klíčová slova
- aging, caloric restriction, cysteine, metabolic syndrome, methionine, nutrition, sulfur amino acids, triglycerides,
- MeSH
- aminokyseliny sírové * metabolismus MeSH
- cystein * metabolismus MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- methionin metabolismus MeSH
- myši MeSH
- obezita metabolismus MeSH
- průřezové studie MeSH
- serin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny sírové * MeSH
- cystein * MeSH
- methionin MeSH
- serin MeSH
Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.
Department of Animal Bioscience University of Guelph Guelph Ontario Canada
Department of Nutrition Institute of Basic Medical Sciences University of Oslo Oslo Norway
Zobrazit více v PubMed
Ables, G. P. , Perrone, C. E. , Orentreich, D. , & Orentreich, N. (2012). Methionine‐restricted C57BL/6J mice are resistant to diet‐induced obesity and insulin resistance but have low bone density. PLoS One, 7(12), e51357. 10.1371/journal.pone.0051357PONE-D-12-20988 PubMed DOI PMC
Achouri, Y. , Robbi, M. , & Van Schaftingen, E. (1999). Role of cysteine in the dietary control of the expression of 3‐phosphoglycerate dehydrogenase in rat liver. The Biochemical Journal, 344(Pt 1), 15–21. PubMed PMC
Antoniades, C. , Shirodaria, C. , Leeson, P. , Baarholm, O. A. , Van‐Assche, T. , Cunnington, C. , Pillai, R. , Ratnatunga, C. , Tousoulis, D. , Stefanadis, C. , Refsum, H. , & Channon, K. M. (2009). MTHFR 677 C>T Polymorphism reveals functional importance for 5‐methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation, 119(18), 2507–2515. 10.1161/CIRCULATIONAHA.108.808675 PubMed DOI
Bidlingmeyer, B. A. , Cohen, S. A. , & Tarvin, T. L. (1984). Rapid analysis of amino acids using pre‐column derivatization. Journal of Chromatography, 336(1), 93–104. PubMed
Brosnan, J. T. , & Hall, B. (1989). Renal serine production in vivo: Effects of dietary manipulation of serine status. Canadian Journal of Physiology and Pharmacology, 67(9), 1058–1061. 10.1139/y89-167 PubMed DOI
Brown, D. M. , Williams, H. , Ryan, K. J. , Wilson, T. L. , Daniel, Z. C. , Mareko, M. H. , Emes, R. D. , Harris, D. W. , Jones, S. , Wattis, J. A. , Dryden, I. L. , Hodgman, T. C. , Brameld, J. M. , & Parr, T. (2016). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK‐M) and serine biosynthetic pathway genes are co‐ordinately increased during anabolic agent‐induced skeletal muscle growth. Scientific Reports, 6, 28693. 10.1038/srep28693 PubMed DOI PMC
Catalan, V. , Gomez‐Ambrosi, J. , Rodriguez, A. , & Fruhbeck, G. (2013). Adipose tissue immunity and cancer. Frontiers in Physiology, 4, 275. 10.3389/fphys.2013.00275 PubMed DOI PMC
Chen, Y. , & Nielsen, J. (2019). Energy metabolism controls phenotypes by protein efficiency and allocation. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17592–17597. 10.1073/pnas.1906569116 PubMed DOI PMC
Cooke, D. , Mattocks, D. , Nichenametla, S. N. , Anunciado‐Koza, R. P. , Koza, R. A. , & Ables, G. P. (2020). Weight loss and concomitant adipose autophagy in methionine‐restricted obese mice is not dependent on adiponectin or FGF21. Obesity, 28(6), 1075–1085. 10.1002/oby.22763 PubMed DOI PMC
DeNicola, G. M. , Chen, P. H. , Mullarky, E. , Sudderth, J. A. , Hu, Z. , Wu, D. , Tang, H. , Xie, Y. , Asara, J. M. , Huffman, K. E. , Wistuba, I. I. , Minna, J. D. , DeBerardinis, R. J. , & Cantley, L. C. (2015). NRF2 regulates serine biosynthesis in non‐small cell lung cancer. Nature Genetics, 47(12), 1475–1481. 10.1038/ng.3421 PubMed DOI PMC
Elshorbagy, A. K. , Church, C. , Valdivia‐Garcia, M. , Smith, A. D. , Refsum, H. , & Cox, R. (2012). Dietary cystine level affects metabolic rate and glycaemic control in adult mice. The Journal of Nutritional Biochemistry, 23(4), 332–340. 10.1016/j.jnutbio.2010.12.009 PubMed DOI PMC
Elshorbagy, A. K. , Kozich, V. , Smith, A. D. , & Refsum, H. (2012). Cysteine and obesity: Consistency of the evidence across epidemiologic, animal and cellular studies. Current Opinion in Clinical Nutrition and Metabolic Care, 15(1), 49–57. 10.1097/MCO.0b013e32834d199f PubMed DOI
Elshorbagy, A. K. , Valdivia‐Garcia, M. , Mattocks, D. A. , Plummer, J. D. , Smith, A. D. , Drevon, C. A. , Refsum, H. , & Perrone, C. E. (2011). Cysteine supplementation reverses methionine restriction effects on rat adiposity: Significance of stearoyl‐coenzyme A desaturase. Journal of Lipid Research, 52(1), 104–112. 10.1194/jlr.M010215 PubMed DOI PMC
Enriquez‐Hesles, E. , Smith, D. L., Jr. , Maqani, N. , Wierman, M. B. , Sutcliffe, M. D. , Fine, R. D. , Kalita, A. , Santos, S. M. , Muehlbauer, M. J. , Bain, J. R. , Janes, K. A. , Hartman, J. L. T. , Hirschey, M. D. , & Smith, J. S. (2021). A cell‐nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one‐carbon metabolism. Journal of Biological Chemistry, 296, 100125. 10.1074/jbc.RA120.015402 PubMed DOI PMC
Esch, B. M. , Limar, S. , Bogdanowski, A. , Gournas, C. , More, T. , Sundag, C. , Walter, S. , Heinisch, J. J. , Ejsing, C. S. , Andre, B. , & Frohlich, F. (2020). Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae . PLoS Genetics, 16(8), e1008745. 10.1371/journal.pgen.1008745 PubMed DOI PMC
Forney, L. A. , Stone, K. P. , Gibson, A. N. , Vick, A. M. , Sims, L. C. , Fang, H. , & Gettys, T. W. (2020). Sexually dimorphic effects of dietary methionine restriction are dependent on age when the diet is introduced. Obesity, 28(3), 581–589. 10.1002/oby.22721 PubMed DOI PMC
Forney, L. A. , Wanders, D. , Stone, K. P. , Pierse, A. , & Gettys, T. W. (2017). Concentration‐dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity, 25(4), 730–738. 10.1002/oby.21806 PubMed DOI PMC
Gantner, M. L. , Eade, K. , Wallace, M. , Handzlik, M. K. , Fallon, R. , Trombley, J. , Bonelli, R. , Giles, S. , Harkins‐Perry, S. , Heeren, T. F. C. , Sauer, L. , Ideguchi, Y. , Baldini, M. , Scheppke, L. , Dorrell, M. I. , Kitano, M. , Hart, B. J. , Cai, C. , Nagasaki, T. , … Friedlander, M. (2019). Serine and lipid metabolism in macular disease and peripheral neuropathy. The New England Journal of Medicine, 381(15), 1422–1433. 10.1056/NEJMoa1815111 PubMed DOI PMC
Gao, X. , Lee, K. , Reid, M. A. , Sanderson, S. M. , Qiu, C. , Li, S. , Liu, J. , & Locasale, J. W. (2018). Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Reports, 22(13), 3507–3520. 10.1016/j.celrep.2018.03.017 PubMed DOI PMC
Gao, X. , Sanderson, S. M. , Dai, Z. , Reid, M. A. , Cooper, D. E. , Lu, M. , Richie, J. P., Jr. , Ciccarella, A. , Calcagnotto, A. , Mikhael, P. G. , Mentch, S. J. , Liu, J. , Ables, G. , Kirsch, D. G. , Hsu, D. S. , Nichenametla, S. N. , & Locasale, J. W. (2019). Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature, 572(7769), 397–401. 10.1038/s41586-019-1437-3 PubMed DOI PMC
Gu, Y. , Albuquerque, C. P. , Braas, D. , Zhang, W. , Villa, G. R. , Bi, J. , Ikegami, S. , Masui, K. , Gini, B. , Yang, H. , Gahman, T. C. , Shiau, A. K. , Cloughesy, T. F. , Christofk, H. R. , Zhou, H. , Guan, K. L. , & Mischel, P. S. (2017). mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine‐glutamate antiporter xCT. Molecular Cell, 67(1), 128–138 e127. 10.1016/j.molcel.2017.05.030 PubMed DOI PMC
Gupta, R. , Walvekar, A. S. , Liang, S. , Rashida, Z. , Shah, P. , & Laxman, S. (2019). A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. eLife, 8. 10.7554/eLife.44795 PubMed DOI PMC
Gutierrez, D. A. , Puglisi, M. J. , & Hasty, A. H. (2009). Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Current Diabetes Reports, 9(1), 26–32. 10.1007/s11892-009-0006-9 PubMed DOI PMC
Heinrikson, R. L. , & Meredith, S. C. (1984). Amino acid analysis by reverse‐phase high‐performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Analytical Biochemistry, 136(1), 65–74. PubMed
Ishibashi, T. , & Kametaka, M. (1977). Methionine requirements of rats in various body weights. Agricultural and Biological Chemistry, 41(9), 1795–1796.
Janosikova, B. , Pavlikova, M. , Kocmanova, D. , Vitova, A. , Vesela, K. , Krupkova, L. , Kahleova, R. , Krijt, J. , Kraml, P. , Hyanek, J. , Zvarova, J. , Andel, M. , & Kozich, V. (2003). Genetic variants of homocysteine metabolizing enzymes and the risk of coronary artery disease. Molecular Genetics and Metabolism, 79(3), 167–175. 10.1016/s1096-7192(03)00079-9 PubMed DOI
Jeon, J. S. , Oh, J. J. , Kwak, H. C. , Yun, H. Y. , Kim, H. C. , Kim, Y. M. , Oh, S. J. , & Kim, S. K. (2018). Age‐related changes in sulfur amino acid metabolism in male C57BL/6 mice. Biomolecules & Therapeutics (Seoul), 26(2), 167–174. 10.4062/biomolther.2017.054 PubMed DOI PMC
Krijt, J. , Vackova, M. , & Kozich, V. (2001). Measurement of homocysteine and other aminothiols in plasma: Advantages of using tris(2‐carboxyethyl)phosphine as reductant compared with tri‐n‐butylphosphine. Clinical Chemistry, 47(10), 1821–1828. PubMed
Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta‐analyses. Social Psychological and Personality Science, 8(4), 355–362. 10.1177/1948550617697177 PubMed DOI PMC
Lee, B. , & Shao, J. (2014). Adiponectin and energy homeostasis. Reviews in Endocrine & Metabolic Disorders, 15(2), 149–156. 10.1007/s11154-013-9283-3 PubMed DOI PMC
Leithner, K. , Triebl, A. , Trotzmuller, M. , Hinteregger, B. , Leko, P. , Wieser, B. I. , Grasmann, G. , Bertsch, A. L. , Zullig, T. , Stacher, E. , Valli, A. , Prassl, R. , Olschewski, A. , Harris, A. L. , Kofeler, H. C. , Olschewski, H. , & Hrzenjak, A. (2018). The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 115(24), 6225–6230. 10.1073/pnas.1719871115 PubMed DOI PMC
Locasale, J. W. , Grassian, A. R. , Melman, T. , Lyssiotis, C. A. , Mattaini, K. R. , Bass, A. J. , Heffron, G. , Metallo, C. M. , Muranen, T. , Sharfi, H. , Sasaki, A. T. , Anastasiou, D. , Mullarky, E. , Vokes, N. I. , Sasaki, M. , Beroukhim, R. , Stephanopoulos, G. , Ligon, A. H. , Meyerson, M. , … Vander Heiden, M. G. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 43(9), 869–874. 10.1038/ng.890 PubMed DOI PMC
Lowry, M. , Hall, D. E. , Hall, M. S. , & Brosnan, J. T. (1987). Renal metabolism of amino acids in vivo: Studies on serine and glycine fluxes. The American Journal of Physiology, 252(2 Pt 2), F304–F309. 10.1152/ajprenal.1987.252.2.F304 PubMed DOI
Malloy, V. L. , Perrone, C. E. , Mattocks, D. A. , Ables, G. P. , Caliendo, N. S. , Orentreich, D. S. , & Orentreich, N. (2013). Methionine restriction prevents the progression of hepatic steatosis in leptin‐deficient obese mice. Metabolism, 62(11), 1651–1661. 10.1016/j.metabol.2013.06.012 PubMed DOI
Marcolin, E. , Forgiarini, L. F. , Tieppo, J. , Dias, A. S. , Freitas, L. A. , & Marroni, N. P. (2011). Methionine‐ and choline‐deficient diet induces hepatic changes characteristic of non‐alcoholic steatohepatitis. Arquivos de Gastroenterologia, 48(1), 72–79. 10.1590/s0004-28032011000100015 PubMed DOI
Martinez‐Reyes, I. , & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications, 11(1), 102. 10.1038/s41467-019-13668-3 PubMed DOI PMC
Melnyk, S. , Pogribna, M. , Pogribny, I. P. , Yi, P. , & James, S. J. (2000). Measurement of plasma and intracellular S‐adenosylmethionine and S‐adenosylhomocysteine utilizing coulometric electrochemical detection: Alterations with plasma homocysteine and pyridoxal 5′‐phosphate concentrations. Clinical Chemistry, 46(2), 265–272. PubMed
Mendez‐Lucas, A. , Hyrossova, P. , Novellasdemunt, L. , Vinals, F. , & Perales, J. C. (2014). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK‐M) is a pro‐survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. The Journal of Biological Chemistry, 289(32), 22090–22102. 10.1074/jbc.M114.566927 PubMed DOI PMC
Murtas, G. , Marcone, G. L. , Sacchi, S. , & Pollegioni, L. (2020). L‐serine synthesis via the phosphorylated pathway in humans. Cellular and Molecular Life Sciences, 77(24), 5131–5148. 10.1007/s00018-020-03574-z PubMed DOI PMC
Muthusamy, T. , Cordes, T. , Handzlik, M. K. , You, L. , Lim, E. W. , Gengatharan, J. , Pinto, A. F. M. , Badur, M. G. , Kolar, M. J. , Wallace, M. , Saghatelian, A. , & Metallo, C. M. (2020). Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 586(7831), 790–795. 10.1038/s41586-020-2609-x PubMed DOI PMC
Nichenametla, S. N. , Mattocks, A. L. , & Malloy, V. (2020). Age‐at‐onset dependent effects of sulfur amino acid restriction on markers of growth and stress in male F344 rats. Aging Cell, 19(7), e13177. 10.1111/acel.13177 PubMed DOI PMC
Nichenametla, S. N. , Mattocks, D. A. L. , Malloy, V. L. , & Pinto, J. T. (2018). Sulfur amino acid restriction‐induced changes in redox‐sensitive proteins are associated with slow protein synthesis rates. Annals of the New York Academy of Sciences, 1418, 80–94. 10.1111/nyas.13556 PubMed DOI
Nordic Nutrition Recommendations 2012: Integrating nutrition and physical activity. (2014). (5th ed.). Narayana Press.
Nye, C. K. , Hanson, R. W. , & Kalhan, S. C. (2008). Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. The Journal of Biological Chemistry, 283(41), 27565–27574. 10.1074/jbc.M804393200 PubMed DOI PMC
Olsen, T. , Ovrebo, B. , Haj‐Yasein, N. , Lee, S. , Svendsen, K. , Hjorth, M. , Bastani, N. E. , Norheim, F. , Drevon, C. A. , Refsum, H. , & Vinknes, K. J. (2020). Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: A double‐blind randomized controlled pilot study. Journal of Translational Medicine, 18(1), 122. 10.1186/s12967-020-02288-x PubMed DOI PMC
Olsen, T. , Ovrebo, B. , Turner, C. , Bastani, N. E. , Refsum, H. , & Vinknes, K. J. (2018). Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: A randomized controlled pilot trial. Nutrients, 10(12), 1822. 10.3390/nu10121822 PubMed DOI PMC
Olsen, T. , Ovrebo, B. , Turner, C. , Bastani, N. E. , Refsum, H. , & Vinknes, K. J. (2021). Effects of short‐term methionine and cysteine restriction and enrichment with polyunsaturated fatty acids on oral glucose tolerance, plasma amino acids, fatty acids, lactate and pyruvate: Results from a pilot study. BMC Research Notes, 14(1), 43. 10.1186/s13104-021-05463-5 PubMed DOI PMC
Perrone, C. E. , Mattocks, D. A. , Hristopoulos, G. , Plummer, J. D. , Krajcik, R. A. , & Orentreich, N. (2008). Methionine restriction effects on 11‐HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. Journal of Lipid Research, 49(1), 12–23. 10.1194/jlr.M700194-JLR200 PubMed DOI
Pettit, A. P. , Jonsson, W. O. , Bargoud, A. R. , Mirek, E. T. , Peelor, F. F., 3rd , Wang, Y. , Gettys, T. W. , Kimball, S. R. , Miller, B. F. , Hamilton, K. L. , Wek, R. C. , & Anthony, T. G. (2017). Dietary methionine restriction regulates liver protein synthesis and gene expression independently of eukaryotic initiation factor 2 phosphorylation in mice. Journal of Nutrition, 147(6), 1031–1040. 10.3945/jn.116.246710 PubMed DOI PMC
Plaisance, E. P. , Greenway, F. L. , Boudreau, A. , Hill, K. L. , Johnson, W. D. , Krajcik, R. A. , Perrone, C. E. , Orentreich, N. , Cefalu, W. T. , & Gettys, T. W. (2011). Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism, 96(5), E836–E840. 10.1210/jc.2010-2493 PubMed DOI PMC
Reeves, P. G. , Nielsen, F. H. , & Fahey, G. C., Jr. (1993). AIN‐93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN‐76A rodent diet. The Journal of Nutrition, 123(11), 1939–1951. 10.1093/jn/123.11.1939 PubMed DOI
Sarwar, G. , Peace, R. W. , & Botting, H. G. (1991). Dietary cysteine/methionine ratios and taurine supplementation: Effects on rat growth, amino acids and bile acids. Nutrition Research, 11(4), 355–363. 10.1016/S0271-5317(05)80311-2 DOI
Sim, W. C. , Lee, W. , Sim, H. , Lee, K. Y. , Jung, S. H. , Choi, Y. J. , Kim, H. Y. , Kang, K. W. , Lee, J. Y. , Choi, Y. J. , Kim, S. K. , Jun, D. W. , Kim, W. , & Lee, B. H. (2020). Downregulation of PHGDH expression and hepatic serine level contribute to the development of fatty liver disease. Metabolism, 102, 154000. 10.1016/j.metabol.2019.154000 PubMed DOI
Stead, L. M. , Brosnan, M. E. , & Brosnan, J. T. (2000). Characterization of homocysteine metabolism in the rat liver. The Biochemical Journal, 350(Pt 3), 685–692. PubMed PMC
Stone, K. P. , Ghosh, S. , Kovalik, J. P. , Orgeron, M. , Wanders, D. , Sims, L. C. , & Gettys, T. W. (2021). The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4. Scientific Reports, 11(1), 3765. 10.1038/s41598-021-83380-0 PubMed DOI PMC
Stout, M. B. , Justice, J. N. , Nicklas, B. J. , & Kirkland, J. L. (2017). Physiological aging: Links among adipose tissue dysfunction, diabetes, and frailty. Physiology, 32(1), 9–19. 10.1152/physiol.00012.2016 PubMed DOI PMC
Tamanna, N. , Mayengbam, S. , House, J. D. , & Treberg, J. R. (2018). Methionine restriction leads to hyperhomocysteinemia and alters hepatic H2S production capacity in Fischer‐344 rats. Mechanisms of Ageing and Development, 176, 9–18. 10.1016/j.mad.2018.10.004 PubMed DOI
Tani, H. , Ogata, K. , & Itatsu, T. (1973). Effect of ethionine on carbohydrate and lipid metabolism. Journal of Lipid Research, 14(1), 32–40. PubMed
Truong, V. , Huang, S. , Dennis, J. , Lemire, M. , Zwingerman, N. , Aissi, D. , Kassam, I. , Perret, C. , Wells, P. , Morange, P. E. , Wilson, M. , Tregouet, D. A. , & Gagnon, F. (2017). Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Scientific Reports, 7(1), 11207. 10.1038/s41598-017-09552-z PubMed DOI PMC
Wang, Z. V. , Schraw, T. D. , Kim, J. Y. , Khan, T. , Rajala, M. W. , Follenzi, A. , & Scherer, P. E. (2007). Secretion of the adipocyte‐specific secretory protein adiponectin critically depends on thiol‐mediated protein retention. Molecular and Cellular Biology, 27(10), 3716–3731. 10.1128/MCB.00931-06 PubMed DOI PMC
Womack, M. , Kemmerer, K. S. , & Rose, W. C. (1937). The relation of cystine and methionine to growth. Journal of Biological Chemistry, 121, 403–410.
Yin, Y. , Corry, K. A. , Loughran, J. P. , & Li, J. (2020). Moderate Nrf2 activation by genetic disruption of Keap1 has sex‐specific effects on bone mass in mice. Scientific Reports, 10(1), 348. 10.1038/s41598-019-57185-1 PubMed DOI PMC
Yu, L. , Teoh, S. T. , Ensink, E. , Ogrodzinski, M. P. , Yang, C. , Vazquez, A. I. , & Lunt, S. Y. (2019). Cysteine catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase knockdown in pancreatic cancer cells. Cancer & Metabolism, 7, 13. 10.1186/s40170-019-0205-z PubMed DOI PMC
Yu, S. , Meng, S. , Xiang, M. , & Ma, H. (2021). Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Molecular Metabolism, 53, 101257. 10.1016/j.molmet.2021.101257 PubMed DOI PMC
Zhang, H. , Davies, K. J. A. , & Forman, H. J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology & Medicine, 88(Pt B), 314–336. 10.1016/j.freeradbiomed.2015.05.036 PubMed DOI PMC
Zhang, Z. , TeSlaa, T. , Xu, X. , Zeng, X. , Yang, L. , Xing, G. , Tesz, G. J. , Clasquin, M. F. , & Rabinowitz, J. D. (2021). Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nature Metabolism, 3(12), 1608–1620. 10.1038/s42255-021-00487-4 PubMed DOI PMC
Zhou, X. , He, L. , Wan, D. , Yang, H. , Yao, K. , Wu, G. , Wu, X. , & Yin, Y. (2016). Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids, 48(7), 1533–1540. 10.1007/s00726-016-2247-7 PubMed DOI
Zhou, Y. , Qiu, L. , Xiao, Q. , Wang, Y. , Meng, X. , Xu, R. , Wang, S. , & Na, R. (2013). Obesity and diabetes related plasma amino acid alterations. Clinical Biochemistry, 46(15), 1447–1452. 10.1016/j.clinbiochem.2013.05.045 PubMed DOI