Longitudinal study of epigenetic aging and its relationship with brain aging and cognitive skills in young adulthood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37593374
PubMed Central
PMC10427722
DOI
10.3389/fnagi.2023.1215957
Knihovny.cz E-zdroje
- Klíčová slova
- IQ, brain age, epigenetic age, longitudinal, magnetic resonance imaging (MRI),
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The proportion of older adults within society is sharply increasing and a better understanding of how we age starts to be critical. However, given the paucity of longitudinal studies with both neuroimaging and epigenetic data, it remains largely unknown whether the speed of the epigenetic clock changes over the life course and whether any such changes are proportional to changes in brain aging and cognitive skills. To fill these knowledge gaps, we conducted a longitudinal study of a prenatal birth cohort, studied epigenetic aging across adolescence and young adulthood, and evaluated its relationship with brain aging and cognitive outcomes. METHODS: DNA methylation was assessed using the Illumina EPIC Platform in adolescence, early and late 20 s, DNA methylation age was estimated using Horvath's epigenetic clock, and epigenetic age gap (EpiAGE) was calculated as DNA methylation age residualized for batch, chronological age and the proportion of epithelial cells. Structural magnetic resonance imaging (MRI) was acquired in both the early 20 s and late 20 s using the same 3T Prisma MRI scanner and brain age was calculated using the Neuroanatomical Age Prediction using R (NAPR) platform. Cognitive skills were assessed using the Wechsler Adult Intelligence Scale (WAIS) in the late 20 s. RESULTS: The EpiAGE in adolescence, the early 20 s, and the late 20 s were positively correlated (r = 0.34-0.47), suggesting that EpiAGE is a relatively stable characteristic of an individual. Further, a faster pace of aging between the measurements was positively correlated with EpiAGE at the end of the period (r = 0.48-0.77) but negatively correlated with EpiAGE at the earlier time point (r = -0.42 to -0.55), suggesting a compensatory mechanism where late matures might be catching up with the early matures. Finally, higher positive EpiAGE showed small (Adj R2 = 0.03) but significant relationships with a higher positive brain age gap in all participants and lower full-scale IQ in young adult women in the late 20 s. DISCUSSION: We conclude that the EpiAGE is a relatively stable characteristic of an individual across adolescence and early adulthood, but that it shows only a small relationship with accelerated brain aging and a women-specific relationship with worse performance IQ.
Brain and Mind Research Central European Institute of Technology Brno Czechia
Department of Psychiatry University of Toronto Toronto ON Canada
Faculty of Informatics Masaryk University Brno Czechia
Zobrazit více v PubMed
Belsky D. W., Caspi A., Houts R., Cohen H. J., Corcoran D. L., Danese A., et al. (2015). Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. U.S.A. 112 E4104–E4110. 10.1073/pnas.1506264112 PubMed DOI PMC
Beltrán-Sánchez H., Palloni A., Huangfu Y., McEniry M. C. (2022). Modeling biological age and its link with the aging process. PNAS Nexus 1:gac135. 10.1093/pnasnexus/pgac135 PubMed DOI PMC
Case A., Paxson C. (2005). Sex differences in morbidity and mortality. Demography 42 189–214. 10.1353/dem.2005.0011 PubMed DOI
Cole J. H., Marioni R. E., Harris S. E., Deary I. J. (2019). Brain age and other bodily ‘ages’: Implications for neuropsychiatry. Mol. Psychiatry 24 266–281. 10.1038/s41380-018-0098-1 PubMed DOI PMC
Fernandez-Egea E., Kirkpatrick B. (2017). Correspondence regarding two recent publications in npj:schizophrenia about DNAm and accelerated aging in schizophrenia. NPJ Schizophr. 3:38. 10.1038/s41537-017-0041-5 PubMed DOI PMC
Golding J. (1989). European longitudinal study of pregnancy and childhood (ELSPAC). Paediatr. Perinat. Epidemiol. 3 460–469. 10.1111/j.1365-3016.1989.tb00533.x PubMed DOI
Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., et al. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49 359–367. 10.1016/j.molcel.2012.10.016 PubMed DOI PMC
He W., Goodkind D., Kowal P. (2016). An aging world: 2015. International population report. Washington, DC: United States Census Bureau.
Hillary R. F., Stevenson A. J., Cox S. R., McCartney D. L., Harris S. E., Seeboth A., et al. (2021). An epigenetic predictor of death captures multi-modal measures of brain health. Mol. Psychiatry 26 3806–3816. 10.1038/s41380-019-0616-9 PubMed DOI PMC
Horvath S. (2013). DNA methylation age of human tissues and cell types. Genome Biol. 14:R115. 10.1186/gb-2013-14-10-r115 PubMed DOI PMC
Horvath S., Raj K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19 371–384. 10.1038/s41576-018-0004-3 PubMed DOI
Horvath S., Gurven M., Levine M. E., Trumble B. C., Kaplan H., Allayee H., et al. (2016). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 17:171. 10.1186/s13059-016-1030-0 PubMed DOI PMC
Jain P., Binder A. M., Chen B., Parada H., Jr., Gallo L. C., Alcaraz J., et al. (2022). Analysis of epigenetic age acceleration and healthy longevity among older US women. JAMA Netw. Open 5:e2223285. 10.1001/jamanetworkopen.2022.23285 PubMed DOI PMC
Jáni M., Zacková L., Piler P., Andrýsková L., Brázdil M., Marečková K. (2022). Birth outcomes, puberty onset, and obesity as long-term predictors of biological aging in young adulthood. Front. Nutr. 9:1100237. 10.3389/fnut.2022.1100237 PubMed DOI PMC
Kabacik S., Horvath S., Cohen H., Raj K. (2018). Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging (Albany NY) 10 2800–2815. 10.18632/aging.101588 PubMed DOI PMC
Kankaanpää A., Tolvanen A., Saikkonen P., Heikkinen A., Laakkonen E. K., Kaprio J., et al. (2022). Do epigenetic clocks provide explanations for sex differences in life span? A cross-sectional twin study. J. Gerontol. A Biol. Sci. Med. Sci. 77 1898–1906. 10.1093/gerona/glab337 PubMed DOI PMC
Levine D. A., Gross A. L., Briceño E. M., Tilton N., Giordani B. J., Sussman J. B., et al. (2021). Sex differences in cognitive decline among US adults. JAMA Netw. Open 4:e210169. 10.1001/jamanetworkopen.2021.0169 PubMed DOI PMC
Lowe D., Horvath S., Raj K. (2016). Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7 8524–8531. 10.18632/oncotarget.7383 PubMed DOI PMC
Lu A. T., Hannon E., Levine M. E., Crimmins E. M., Lunnon K., Mill J., et al. (2017). Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nat. Commun. 8:15353. 10.1038/ncomms15353 PubMed DOI PMC
Lu A. T., Quach A., Wilson J. G., Reiner A. P., Aviv A., Raj K., et al. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11 303–327. 10.18632/aging.101684 PubMed DOI PMC
Mareckova K., Marecek R., Andryskova L., Brazdil M., Nikolova Y. S. (2020a). Maternal depressive symptoms during pregnancy and brain age in young adult offspring: Findings from a prenatal birth cohort. Cereb. Cortex 30 3991–3999. 10.1093/cercor/bhaa014 PubMed DOI
Mareckova K., Marecek R., Jani M., Zackova L., Andryskova L., Brazdil M., et al. (2023). Association of maternal depression during pregnancy and recent stress with brain age among adult offspring. JAMA Netw. Open 6:e2254581. 10.1001/jamanetworkopen.2022.54581 PubMed DOI PMC
Marečková K., Pačínková A., Klasnja A., Shin J., Andrýsková L., Stano-Kozubík K., et al. (2020b). Epigenetic clock as a correlate of anxiety. Neuroimage Clin. 28:102458. 10.1016/j.nicl.2020.102458 PubMed DOI PMC
Marioni R. E., Suderman M., Chen B. H., Horvath S., Bandinelli S., Morris T., et al. (2019). Tracking the epigenetic clock across the human life course: A meta-analysis of longitudinal cohort data. J. Gerontol. A Biol. Sci. Med. Sci. 74 57–61. 10.1093/gerona/gly060 PubMed DOI PMC
Oblak L., van der Zaag J., Higgins-Chen A. T., Levine M. E., Boks M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 69:101348. 10.1016/j.arr.2021.101348 PubMed DOI
Oksuzyan A., Juel K., Vaupel J. W., Christensen K. (2008). Men: Good health and high mortality. Sex differences in health and aging. Aging Clin. Exp. Res. 20 91–102. 10.1007/BF03324754 PubMed DOI PMC
Pardoe H. R., Kuzniecky R. (2018). NAPR: A cloud-based framework for neuroanatomical age prediction. Neuroinformatics 16 43–49. 10.1007/s12021-017-9346-9 PubMed DOI
Piler P., Kandrnal V., Kukla L., Andryskova L., Svancara J., Jarkovsky J., et al. (2017). Cohort profile: The European longitudinal study of pregnancy and childhood (ELSPAC) in the Czech Republic. Int. J. Epidemiol. 46 1379–1379f. 10.1093/ije/dyw091 PubMed DOI PMC
Rasmussen C. E., Williams C. K. I. (2005). Gaussian processes for machine learning (adaptive computation and machine learning). London: The MIT Press, 266.
Sanders F., Baltramonaityte V., Donohoe G., Davies N. M., Dunn E. C., Cecil C. A. M., et al. (2022). Associations between methylation age and brain age in late adolescence. bioRxiv [preprint]. 10.1101/2022.09.08.506972 DOI
Simpkin A. J., Hemani G., Suderman M., Gaunt T. R., Lyttleton O., McArdle W. L., et al. (2016). Prenatal and early life influences on epigenetic age in children: A study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 25 191–201. 10.1093/hmg/ddv456 PubMed DOI PMC
Tam W.-C. C. (2004). The utility of seven-subtest short forms of the wechsler adult intelligence Scale-III in young adults. J. Psychoeduc. Assess. 22 62–71. 10.1177/073428290402200105 PubMed DOI
Teeuw J., Ori A. P. S., Brouwer R. M., de Zwarte S. M. C., Schnack H. G., Hulshoff Pol H. E., et al. (2021). Accelerated aging in the brain, epigenetic aging in blood, and polygenic risk for schizophrenia. Schizophr. Res. 231 189–197. 10.1016/j.schres.2021.04.005 PubMed DOI
Teschendorff A. E., Marabita F., Lechner M., Bartlett T., Tegner J., Gomez-Cabrero D., et al. (2013). A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29 189–196. 10.1093/bioinformatics/bts680 PubMed DOI PMC
Tian Y., Morris T. J., Webster A. P., Yang Z., Beck S., Feber A., et al. (2017). ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33 3982–3984. 10.1093/bioinformatics/btx513 PubMed DOI PMC
Tipping M. E. (2001). Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 211–244.
Zheng Y., Habes M., Gonzales M., Pomponio R., Nasrallah I., Khan S., et al. (2022). Mid-life epigenetic age, neuroimaging brain age, and cognitive function: Coronary artery risk development in young adults (CARDIA) study. Aging (Albany NY) 14 1691–1712. 10.18632/aging.203918 PubMed DOI PMC
Zhou A., Wu Z., Zaw Phyo A. Z., Torres D., Vishwanath S., Ryan J. (2022). Epigenetic aging as a biomarker of dementia and related outcomes: A systematic review. Epigenomics 14 1125–1138. 10.2217/epi-2022-0209 PubMed DOI