Association of Maternal Depression During Pregnancy and Recent Stress With Brain Age Among Adult Offspring
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36716025
PubMed Central
PMC9887495
DOI
10.1001/jamanetworkopen.2022.54581
PII: 2800812
Knihovny.cz E-zdroje
- MeSH
- deprese * MeSH
- dítě MeSH
- dospělé děti MeSH
- dospělí MeSH
- kohortové studie MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
IMPORTANCE: Maternal mental health problems during pregnancy are associated with altered neurodevelopment in offspring, but the long-term relationship between these prenatal risk factors and offspring brain structure in adulthood remains incompletely understood due to a paucity of longitudinal studies. OBJECTIVE: To evaluate the association between exposure to maternal depression in utero and offspring brain age in the third decade of life, and to evaluate recent stressful life events as potential moderators of this association. DESIGN, SETTING, AND PARTICIPANTS: This cohort study examined the 30-year follow-up of a Czech prenatal birth cohort with a within-participant design neuroimaging component in young adulthood conducted from 1991 to 2022. Participants from the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort were recruited for 2 magnetic resonance imaging (MRI) follow-ups, one between ages 23 and 24 years (early 20s) and another between ages 28 and 30 years (late 20s). EXPOSURES: Maternal depression during pregnancy; stressful life events in the past year experienced by the young adult offspring. MAIN OUTCOMES AND MEASURES: Gap between estimated neuroanatomical vs chronological age at MRI scan (brain age gap estimation [BrainAGE]) calculated once in participants' early 20s and once in their late 20s, and pace of aging calculated as the differences between BrainAGE at the 2 MRI sessions in young adulthood. RESULTS: A total of 260 individuals participated in the second neuroimaging follow-up (mean [SD] age, 29.5 [0.6] years; 135 [52%] male); MRI data for both time points and a history of maternal depression were available for 110 participants (mean [SD] age, 29.3 [0.6] years; 56 [51%] male). BrainAGE in participants' early 20s was correlated with BrainAGE in their late 20s (r = 0.7, P < .001), and a previously observed association between maternal depression during pregnancy and BrainAGE in their early 20s persisted in their late 20s (adjusted R2 = 0.04; P = .04). However, no association emerged between maternal depression during pregnancy and the pace of aging between the 2 MRI sessions. The stability of the associations between maternal depression during pregnancy and BrainAGE was also supported by the lack of interactions with recent stress. In contrast, more recent stress was associated with greater pace of aging between the 2 MRI sessions, independent of maternal depression (adjusted R2 = 0.09; P = .01). CONCLUSIONS AND RELEVANCE: The findings of this cohort study suggest that maternal depression and recent stress may have independent associations with brain age and the pace of aging, respectively, in young adulthood. Prevention and treatment of depression in pregnant mothers may have long-term implications for offspring brain development.
Zobrazit více v PubMed
Kinsella MT, Monk C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin Obstet Gynecol. 2009;52(3):425-440. doi:10.1097/GRF.0b013e3181b52df1 PubMed DOI PMC
O’Donnell KJ, Glover V, Barker ED, O’Connor TG. The persisting effect of maternal mood in pregnancy on childhood psychopathology. Dev Psychopathol. 2014;26(2):393-403. doi:10.1017/S0954579414000029 PubMed DOI
O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017;174(4):319-328. doi:10.1176/appi.ajp.2016.16020138 PubMed DOI
Meaney MJ. Perinatal maternal depressive symptoms as an issue for population health. Am J Psychiatry. 2018;175(11):1084-1093. doi:10.1176/appi.ajp.2018.17091031 PubMed DOI
Monk C, Lugo-Candelas C, Trumpff C. Prenatal developmental origins of future psychopathology: mechanisms and pathways. Annu Rev Clin Psychol. 2019;15:317-344. doi:10.1146/annurev-clinpsy-050718-095539 PubMed DOI PMC
Scheinost D, Kwon SH, Lacadie C, et al. . Prenatal stress alters amygdala functional connectivity in preterm neonates. Neuroimage Clin. 2016;12:381-388. doi:10.1016/j.nicl.2016.08.010 PubMed DOI PMC
Qiu A, Tuan TA, Ong ML, et al. . COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology. Am J Psychiatry. 2015;172(2):163-172. doi:10.1176/appi.ajp.2014.14030313 PubMed DOI
Qiu A, Shen M, Buss C, et al. ; the GUSTO study group . Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb Cortex. 2017;27(5):3080-3092. doi:10.1093/cercor/bhx065 PubMed DOI PMC
Marecková K, Klasnja A, Bencurova P, Andrýsková L, Brázdil M, Paus T. Prenatal stress, mood, and gray matter volume in young adulthood. Cereb Cortex. 2019;29(3):1244-1250. doi:10.1093/cercor/bhy030 PubMed DOI PMC
Mareckova K, Klasnja A, Andryskova L, Brazdil M, Paus T. Developmental origins of depression-related white matter properties: findings from a prenatal birth cohort. Hum Brain Mapp. 2019;40(4):1155-1163. doi:10.1002/hbm.24435 PubMed DOI PMC
Mareckova K, Miles A, Andryskova L, Brazdil M, Nikolova YS. Temporally and sex-specific effects of maternal perinatal stress on offspring cortical gyrification and mood in young adulthood. Hum Brain Mapp. 2020;41(17):4866-4875. doi:10.1002/hbm.25163 PubMed DOI PMC
Mareckova K, Marecek R, Andryskova L, Brazdil M, Nikolova YS. Maternal depressive symptoms during pregnancy and brain age in young adult offspring: findings from a prenatal birth cohort. Cereb Cortex. 2020;30(7):3991-3999. doi:10.1093/cercor/bhaa014 PubMed DOI
Mareckova K, Marecek R, Andryskova L, Brazdil M, Nikolova YS. Impact of prenatal stress on amygdala anatomy in young adulthood: timing and location matter. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7(2):231-238. doi:10.1016/j.bpsc.2021.07.009 PubMed DOI
Mareckova K, Miles A, Liao Z, et al. . Prenatal stress and its association with amygdala-related structural covariance patterns in youth. Neuroimage Clin. 2022;34:102976. doi:10.1016/j.nicl.2022.102976 PubMed DOI PMC
Franke K, Gaser C, Roseboom TJ, Schwab M, de Rooij SR. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation. Neuroimage. 2018;173:460-471. doi:10.1016/j.neuroimage.2017.10.047 PubMed DOI
Hedderich DM, Menegaux A, Schmitz-Koep B, et al. . Increased Brain Age Gap Estimate (BrainAGE) in young adults after premature birth. Front Aging Neurosci. 2021;13:653365. doi:10.3389/fnagi.2021.653365 PubMed DOI PMC
Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30(6):730-748. doi:10.1016/j.neubiorev.2006.07.001 PubMed DOI PMC
Franke K, Ziegler G, Klöppel S, Gaser C; Alzheimer’s Disease Neuroimaging Initiative . Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010;50(3):883-892. doi:10.1016/j.neuroimage.2010.01.005 PubMed DOI
Franke K, Luders E, May A, Wilke M, Gaser C. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage. 2012;63(3):1305-1312. doi:10.1016/j.neuroimage.2012.08.001 PubMed DOI
Kaufmann T, van der Meer D, Doan NT, et al. . Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci. 2018;22(10):1617-1623. doi:10.1038/s41593-019-0471-7 PubMed DOI PMC
Franke K, Gaser C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s Disease. GeroPsych (Bern). 2012;25:235-245. doi:10.1024/1662-9647/a000074 DOI
Vidal-Pineiro D, Wang Y, Krogsrud SK, et al. . Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. Elife. 2021;10:e69995. doi:10.7554/eLife.69995 PubMed DOI PMC
Monroe SM, Simons AD. Diathesis-stress theories in the context of life stress research: implications for the depressive disorders. Psychol Bull. 1991;110(3):406-425. doi:10.1037/0033-2909.110.3.406 PubMed DOI
Hatton SN, Franz CE, Elman JA, et al. . Negative fateful life events in midlife and advanced predicted brain aging. Neurobiol Aging. 2018;67:1-9. doi:10.1016/j.neurobiolaging.2018.03.004 PubMed DOI PMC
Clausen AN, Fercho KA, Monsour M, et al. . Assessment of brain age in posttraumatic stress disorder: findings from the ENIGMA PTSD and brain age working groups. Brain Behav. 2022;12(1):e2413. doi:10.1002/brb3.2413 PubMed DOI PMC
Valizadeh SA, Hänggi J, Mérillat S, Jäncke L. Age prediction on the basis of brain anatomical measures. Hum Brain Mapp. 2017;38(2):997-1008. doi:10.1002/hbm.23434 PubMed DOI PMC
Wang J, Li W, Miao W, Dai D, Hua J, He H. Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Comput. 2014;52(4):331-341. doi:10.1007/s11517-013-1131-9 PubMed DOI PMC
Piler P, Kandrnal V, Kukla L, et al. . Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46(5):1379-1379f. doi:10.1093/ije/dyw091 PubMed DOI PMC
Golding J. European longitudinal study of pregnancy and childhood (ELSPAC). Paediatr Perinat Epidemiol. 1989;3(4):460-469. doi:10.1111/j.1365-3016.1989.tb00533.x PubMed DOI
Holmes TH, Rahe RH. The Social Readjustment Rating Scale. J Psychosom Res. 1967;11(2):213-218. doi:10.1016/0022-3999(67)90010-4 PubMed DOI
Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050-11055. doi:10.1073/pnas.200033797 PubMed DOI PMC
Pardoe HR, Kuzniecky R. NAPR: a cloud-based framework for neuroanatomical age prediction. Neuroinformatics. 2018;16(1):43-49. doi:10.1007/s12021-017-9346-9 PubMed DOI
Tipping ME. Sparse bayesian learning and the relevance vector machine. J Mach Learn Res. 2001;1:211-244.
Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press; 2005.
Usuda K, Nishi D, Okazaki E, Makino M, Sano Y. Optimal cut-off score of the Edinburgh Postnatal Depression Scale for major depressive episode during pregnancy in Japan. Psychiatry Clin Neurosci. 2017;71(12):836-842. doi:10.1111/pcn.12562 PubMed DOI
Fjell AM, Grydeland H, Krogsrud SK, et al. . Development and aging of cortical thickness correspond to genetic organization patterns. Proc Natl Acad Sci U S A. 2015;112(50):15462-15467. doi:10.1073/pnas.1508831112 PubMed DOI PMC
Díaz-Caneja CM, Alloza C, Gordaliza PM, et al. . Sex differences in lifespan trajectories and variability of human sulcal and gyral morphology. Cereb Cortex. 2021;31(11):5107-5120. doi:10.1093/cercor/bhab145 PubMed DOI
Ossewaarde L, van Wingen GA, Rijpkema M, Bäckström T, Hermans EJ, Fernández G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013;34(5):1187-1193. doi:10.1002/hbm.21502 PubMed DOI PMC
Driemeyer J, Boyke J, Gaser C, Büchel C, May A. Changes in gray matter induced by learning–revisited. PLoS One. 2008;3(7):e2669. doi:10.1371/journal.pone.0002669 PubMed DOI PMC
Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood