Association of Maternal Depression During Pregnancy and Recent Stress With Brain Age Among Adult Offspring

. 2023 Jan 03 ; 6 (1) : e2254581. [epub] 20230103

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36716025

IMPORTANCE: Maternal mental health problems during pregnancy are associated with altered neurodevelopment in offspring, but the long-term relationship between these prenatal risk factors and offspring brain structure in adulthood remains incompletely understood due to a paucity of longitudinal studies. OBJECTIVE: To evaluate the association between exposure to maternal depression in utero and offspring brain age in the third decade of life, and to evaluate recent stressful life events as potential moderators of this association. DESIGN, SETTING, AND PARTICIPANTS: This cohort study examined the 30-year follow-up of a Czech prenatal birth cohort with a within-participant design neuroimaging component in young adulthood conducted from 1991 to 2022. Participants from the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort were recruited for 2 magnetic resonance imaging (MRI) follow-ups, one between ages 23 and 24 years (early 20s) and another between ages 28 and 30 years (late 20s). EXPOSURES: Maternal depression during pregnancy; stressful life events in the past year experienced by the young adult offspring. MAIN OUTCOMES AND MEASURES: Gap between estimated neuroanatomical vs chronological age at MRI scan (brain age gap estimation [BrainAGE]) calculated once in participants' early 20s and once in their late 20s, and pace of aging calculated as the differences between BrainAGE at the 2 MRI sessions in young adulthood. RESULTS: A total of 260 individuals participated in the second neuroimaging follow-up (mean [SD] age, 29.5 [0.6] years; 135 [52%] male); MRI data for both time points and a history of maternal depression were available for 110 participants (mean [SD] age, 29.3 [0.6] years; 56 [51%] male). BrainAGE in participants' early 20s was correlated with BrainAGE in their late 20s (r = 0.7, P < .001), and a previously observed association between maternal depression during pregnancy and BrainAGE in their early 20s persisted in their late 20s (adjusted R2 = 0.04; P = .04). However, no association emerged between maternal depression during pregnancy and the pace of aging between the 2 MRI sessions. The stability of the associations between maternal depression during pregnancy and BrainAGE was also supported by the lack of interactions with recent stress. In contrast, more recent stress was associated with greater pace of aging between the 2 MRI sessions, independent of maternal depression (adjusted R2 = 0.09; P = .01). CONCLUSIONS AND RELEVANCE: The findings of this cohort study suggest that maternal depression and recent stress may have independent associations with brain age and the pace of aging, respectively, in young adulthood. Prevention and treatment of depression in pregnant mothers may have long-term implications for offspring brain development.

Zobrazit více v PubMed

Kinsella MT, Monk C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin Obstet Gynecol. 2009;52(3):425-440. doi:10.1097/GRF.0b013e3181b52df1 PubMed DOI PMC

O’Donnell KJ, Glover V, Barker ED, O’Connor TG. The persisting effect of maternal mood in pregnancy on childhood psychopathology. Dev Psychopathol. 2014;26(2):393-403. doi:10.1017/S0954579414000029 PubMed DOI

O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017;174(4):319-328. doi:10.1176/appi.ajp.2016.16020138 PubMed DOI

Meaney MJ. Perinatal maternal depressive symptoms as an issue for population health. Am J Psychiatry. 2018;175(11):1084-1093. doi:10.1176/appi.ajp.2018.17091031 PubMed DOI

Monk C, Lugo-Candelas C, Trumpff C. Prenatal developmental origins of future psychopathology: mechanisms and pathways. Annu Rev Clin Psychol. 2019;15:317-344. doi:10.1146/annurev-clinpsy-050718-095539 PubMed DOI PMC

Scheinost D, Kwon SH, Lacadie C, et al. . Prenatal stress alters amygdala functional connectivity in preterm neonates. Neuroimage Clin. 2016;12:381-388. doi:10.1016/j.nicl.2016.08.010 PubMed DOI PMC

Qiu A, Tuan TA, Ong ML, et al. . COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology. Am J Psychiatry. 2015;172(2):163-172. doi:10.1176/appi.ajp.2014.14030313 PubMed DOI

Qiu A, Shen M, Buss C, et al. ; the GUSTO study group . Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb Cortex. 2017;27(5):3080-3092. doi:10.1093/cercor/bhx065 PubMed DOI PMC

Marecková K, Klasnja A, Bencurova P, Andrýsková L, Brázdil M, Paus T. Prenatal stress, mood, and gray matter volume in young adulthood. Cereb Cortex. 2019;29(3):1244-1250. doi:10.1093/cercor/bhy030 PubMed DOI PMC

Mareckova K, Klasnja A, Andryskova L, Brazdil M, Paus T. Developmental origins of depression-related white matter properties: findings from a prenatal birth cohort. Hum Brain Mapp. 2019;40(4):1155-1163. doi:10.1002/hbm.24435 PubMed DOI PMC

Mareckova K, Miles A, Andryskova L, Brazdil M, Nikolova YS. Temporally and sex-specific effects of maternal perinatal stress on offspring cortical gyrification and mood in young adulthood. Hum Brain Mapp. 2020;41(17):4866-4875. doi:10.1002/hbm.25163 PubMed DOI PMC

Mareckova K, Marecek R, Andryskova L, Brazdil M, Nikolova YS. Maternal depressive symptoms during pregnancy and brain age in young adult offspring: findings from a prenatal birth cohort. Cereb Cortex. 2020;30(7):3991-3999. doi:10.1093/cercor/bhaa014 PubMed DOI

Mareckova K, Marecek R, Andryskova L, Brazdil M, Nikolova YS. Impact of prenatal stress on amygdala anatomy in young adulthood: timing and location matter. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7(2):231-238. doi:10.1016/j.bpsc.2021.07.009 PubMed DOI

Mareckova K, Miles A, Liao Z, et al. . Prenatal stress and its association with amygdala-related structural covariance patterns in youth. Neuroimage Clin. 2022;34:102976. doi:10.1016/j.nicl.2022.102976 PubMed DOI PMC

Franke K, Gaser C, Roseboom TJ, Schwab M, de Rooij SR. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation. Neuroimage. 2018;173:460-471. doi:10.1016/j.neuroimage.2017.10.047 PubMed DOI

Hedderich DM, Menegaux A, Schmitz-Koep B, et al. . Increased Brain Age Gap Estimate (BrainAGE) in young adults after premature birth. Front Aging Neurosci. 2021;13:653365. doi:10.3389/fnagi.2021.653365 PubMed DOI PMC

Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30(6):730-748. doi:10.1016/j.neubiorev.2006.07.001 PubMed DOI PMC

Franke K, Ziegler G, Klöppel S, Gaser C; Alzheimer’s Disease Neuroimaging Initiative . Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010;50(3):883-892. doi:10.1016/j.neuroimage.2010.01.005 PubMed DOI

Franke K, Luders E, May A, Wilke M, Gaser C. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage. 2012;63(3):1305-1312. doi:10.1016/j.neuroimage.2012.08.001 PubMed DOI

Kaufmann T, van der Meer D, Doan NT, et al. . Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci. 2018;22(10):1617-1623. doi:10.1038/s41593-019-0471-7 PubMed DOI PMC

Franke K, Gaser C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s Disease. GeroPsych (Bern). 2012;25:235-245. doi:10.1024/1662-9647/a000074 DOI

Vidal-Pineiro D, Wang Y, Krogsrud SK, et al. . Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. Elife. 2021;10:e69995. doi:10.7554/eLife.69995 PubMed DOI PMC

Monroe SM, Simons AD. Diathesis-stress theories in the context of life stress research: implications for the depressive disorders. Psychol Bull. 1991;110(3):406-425. doi:10.1037/0033-2909.110.3.406 PubMed DOI

Hatton SN, Franz CE, Elman JA, et al. . Negative fateful life events in midlife and advanced predicted brain aging. Neurobiol Aging. 2018;67:1-9. doi:10.1016/j.neurobiolaging.2018.03.004 PubMed DOI PMC

Clausen AN, Fercho KA, Monsour M, et al. . Assessment of brain age in posttraumatic stress disorder: findings from the ENIGMA PTSD and brain age working groups. Brain Behav. 2022;12(1):e2413. doi:10.1002/brb3.2413 PubMed DOI PMC

Valizadeh SA, Hänggi J, Mérillat S, Jäncke L. Age prediction on the basis of brain anatomical measures. Hum Brain Mapp. 2017;38(2):997-1008. doi:10.1002/hbm.23434 PubMed DOI PMC

Wang J, Li W, Miao W, Dai D, Hua J, He H. Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Comput. 2014;52(4):331-341. doi:10.1007/s11517-013-1131-9 PubMed DOI PMC

Piler P, Kandrnal V, Kukla L, et al. . Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46(5):1379-1379f. doi:10.1093/ije/dyw091 PubMed DOI PMC

Golding J. European longitudinal study of pregnancy and childhood (ELSPAC). Paediatr Perinat Epidemiol. 1989;3(4):460-469. doi:10.1111/j.1365-3016.1989.tb00533.x PubMed DOI

Holmes TH, Rahe RH. The Social Readjustment Rating Scale. J Psychosom Res. 1967;11(2):213-218. doi:10.1016/0022-3999(67)90010-4 PubMed DOI

Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050-11055. doi:10.1073/pnas.200033797 PubMed DOI PMC

Pardoe HR, Kuzniecky R. NAPR: a cloud-based framework for neuroanatomical age prediction. Neuroinformatics. 2018;16(1):43-49. doi:10.1007/s12021-017-9346-9 PubMed DOI

Tipping ME. Sparse bayesian learning and the relevance vector machine. J Mach Learn Res. 2001;1:211-244.

Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press; 2005.

Usuda K, Nishi D, Okazaki E, Makino M, Sano Y. Optimal cut-off score of the Edinburgh Postnatal Depression Scale for major depressive episode during pregnancy in Japan. Psychiatry Clin Neurosci. 2017;71(12):836-842. doi:10.1111/pcn.12562 PubMed DOI

Fjell AM, Grydeland H, Krogsrud SK, et al. . Development and aging of cortical thickness correspond to genetic organization patterns. Proc Natl Acad Sci U S A. 2015;112(50):15462-15467. doi:10.1073/pnas.1508831112 PubMed DOI PMC

Díaz-Caneja CM, Alloza C, Gordaliza PM, et al. . Sex differences in lifespan trajectories and variability of human sulcal and gyral morphology. Cereb Cortex. 2021;31(11):5107-5120. doi:10.1093/cercor/bhab145 PubMed DOI

Ossewaarde L, van Wingen GA, Rijpkema M, Bäckström T, Hermans EJ, Fernández G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013;34(5):1187-1193. doi:10.1002/hbm.21502 PubMed DOI PMC

Driemeyer J, Boyke J, Gaser C, Büchel C, May A. Changes in gray matter induced by learning–revisited. PLoS One. 2008;3(7):e2669. doi:10.1371/journal.pone.0002669 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...