Prenatal stress and its association with amygdala-related structural covariance patterns in youth
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
217065/Z/19/Z
Wellcome Trust - United Kingdom
MC_PC_19009
Medical Research Council - United Kingdom
R01 MH085772
NIMH NIH HHS - United States
MC_PC_15018
Medical Research Council - United Kingdom
076467/Z/05/Z
Wellcome Trust - United Kingdom
G9815508
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
35316668
PubMed Central
PMC8938327
DOI
10.1016/j.nicl.2022.102976
PII: S2213-1582(22)00041-9
Knihovny.cz E-zdroje
- Klíčová slova
- ALSPAC, Amygdala, Degree centrality, ELSPAC, Prenatal stress, Structural covariance,
- MeSH
- amygdala * diagnostické zobrazování MeSH
- dítě MeSH
- dospělí MeSH
- hipokampus MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Prenatal stress influences brain development and mood disorder vulnerability. Brain structural covariance network (SCN) properties based on inter-regional volumetric correlations may reflect developmentally-mediated shared plasticity among regions. Childhood trauma is associated with amygdala-centric SCN reorganization patterns, however, the impact of prenatal stress on SCN properties remains unknown. METHODS: The study included participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) with archival prenatal stress data and structural MRI acquired in young adulthood (age 23-24). SCNs were constructed based on Freesurfer-extracted volumes of 7 subcortical and 34 cortical regions. We compared amygdala degree centrality, a measure of hubness, between those exposed to high vs. low (median split) prenatal stress, defined by maternal reports of stressful life events during the first (n = 93, 57% female) and second (n = 125, 54% female) half of pregnancy. Group differences were tested across network density thresholds (5-40%) using 10,000 permutations, with sex and intracranial volume as covariates, followed by sex-specific analyses. Finally, we sought to replicate our results in an independent all-male sample (n = 450, age 18-20) from the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS: The high-stress during the first half of pregnancy ELSPAC group showed lower amygdala degree particularly in men, who demonstrated this difference at 10 consecutive thresholds, with no significant differences in global network properties. At the lowest significant density threshold, amygdala volume was positively correlated with hippocampus, putamen, rostral anterior and posterior cingulate, transverse temporal, and pericalcarine cortex in the low-stress (p(FDR) < 0.027), but not the high-stress (p(FDR) > 0.882) group. Although amygdala degree was nominally lower across thresholds in the high-stress ALSPAC group, these results were not significant. CONCLUSION: Unlike childhood trauma, prenatal stress may shift SCN towards a less amygdala-centric SCN pattern, particularly in men. These findings did not replicate in an all-male ALSPAC sample, possibly due to the sample's younger age and lower prenatal stress exposure.
Department of Psychology University of Toronto Toronto ON Canada
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Kessler R.C. The effects of stressful life events on depression. Annu. Rev. Psychol. 1997;48(1):191–214. PubMed
Association AP. Diagnostic and Statistical Manual of Mental Disorders (DSM–5). Arlington, VA2013.
Mareckova K., Klasnja A., Bencurova P., Andryskova L., Brazdil M., Paus T. Prenatal stress, mood, and gray matter volume in young adulthood. Cereb. Cortex. 2019;29(3):1244–1250. PubMed PMC
Knuesel I., Chicha L., Britschgi M., Schobel S.A., Bodmer M., Hellings J.A., Toovey S., Prinssen E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014;10(11):643–660. PubMed
Wu Y., Limperopoulos C. Pregnancy stress, anxiety, and depression sequela on neonatal brain development-reply. JAMA Pediatr. 2020;174(9):908–909. PubMed
Qiu A., Tuan T.A., Ong M.L., Li Y., Chen H., Rifkin-Graboi A., Broekman B.F.P., Kwek K., Saw S.-M., Chong Y.-S., Gluckman P.D., Fortier M.V., Holbrook J.D., Meaney M.J. COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology. Am. J. Psychiatry. 2015;172(2):163–172. PubMed
Qiu A., Shen M., Buss C., Chong Y.-S., Kwek K., Saw S.-M., Gluckman P.D., Wadhwa P.D., Entringer S., Styner M., Karnani N., Heim C.M., O'Donnell K.J., Holbrook J.D., Fortier M.V., Meaney M.J. Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb. Cortex. 2017;27(5):3080–3092. PubMed PMC
Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y.S., Kwek, K., Gluckman, P.D., et al. 2013. Maternal anxiety and infants' hippocampal development: timing matters. Transl. Psychiatry 3, e306. PubMed PMC
Scheinost D., Kwon S.H., Lacadie C., Sze G., Sinha R., Constable R.T., Ment L.R. Prenatal stress alters amygdala functional connectivity in preterm neonates. Neuroimage Clin. 2016;12:381–388. PubMed PMC
Lebel C., Walton M., Letourneau N., Giesbrecht G.F., Kaplan B.J., Dewey D. Prepartum and postpartum maternal depressive symptoms are related to children’s brain structure in preschool. Biol. Psychiatry. 2016;80(11):859–868. PubMed
Wen, D.J., Poh, J.S., Ni, S.N., Chong, Y.S., Chen, H., Kwek, K., et al. 2017. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl. Psychiatry. 7(4), e1103. PubMed PMC
Soe N.N., Wen D.J., Poh J.S., Chong Y.-S., Broekman B.F., Chen H., Shek L.P., Tan K.H., Gluckman P.D., Fortier M.V., Meaney M.J., Qiu A. Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls. Hum. Brain Mapp. 2018;39(2):680–690. PubMed PMC
McQuaid G.A., Darcey V.L., Avalos M.F., Fishbein D.H., VanMeter J.W. Altered cortical structure and psychiatric symptom risk in adolescents exposed to maternal stress in utero: a retrospective investigation. Behav. Brain Res. 2019;375:112145. doi: 10.1016/j.bbr.2019.112145. PubMed DOI PMC
Favaro A., Tenconi E., Degortes D., Manara R., Santonastaso P. Neural correlates of prenatal stress in young women. Psychol. Med. 2015;45(12):2533–2543. PubMed
Mareckova K., Miles A., Andryskova L., Brazdil M., Nikolova Y.S. Temporally and sex-specific effects of maternal perinatal stress on offspring cortical gyrification and mood in young adulthood. Hum. Brain Mapp. 2020;41(17):4866–4875. PubMed PMC
Whalen P.J., Phelps E.A., editors. The human amygdala. The Guilford Press; 2009.
LeDoux J.E. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23(1):155–184. PubMed
Sierra-Mercado D., Padilla-Coreano N., Quirk G.J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36(2):529–538. PubMed PMC
McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 2007;87(3):873–904. PubMed
Janak P.H., Tye K.M. From circuits to behaviour in the amygdala. Nature. 2015;517(7534):284–292. PubMed PMC
Buss C., Davis E.P., Shahbaba B., Pruessner J.C., Head K., Sandman C.A. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl. Acad. Sci. USA. 2012;109(20):E1312–E1319. PubMed PMC
Lupien S.J., Parent S., Evans A.C., Tremblay R.E., Zelazo P.D., Corbo V., Pruessner J.C., Seguin J.R. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl. Acad. Sci. USA. 2011;108(34):14324–14329. PubMed PMC
Tottenham N., Sheridan M.A. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front. Hum. Neurosci. 2009;3:68. PubMed PMC
Humphrey T. The development of the human amygdala during early embryonic life. J. Comp. Neurol. 1968;132(1):135–165. PubMed
Teicher M.H., Andersen S.L., Polcari A., Anderson C.M., Navalta C.P., Kim D.M. The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev. 2003;27(1-2):33–44. PubMed
Graham A.M., Rasmussen J.M., Entringer S., Ben Ward E., Rudolph M.D., Gilmore J.H., Styner M., Wadhwa P.D., Fair D.A., Buss C. Maternal cortisol concentrations during pregnancy and sex-specific associations with neonatal amygdala connectivity and emerging internalizing behaviors. Biol. Psychiatry. 2019;85(2):172–181. PubMed PMC
Salm A.K., Pavelko M., Krouse E.M., Webster W., Kraszpulski M., Birkle D.L. Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Brain Res. Dev. Brain Res. 2004;148(2):159–167. PubMed
Nikolić I., Kostović I. Development of the lateral amygdaloid nucleus in the human fetus: transient presence of discrete cytoarchitectonic units. Anat. Embryol. 1986;174(3):355–360. PubMed
Mareckova K., Marecek R., Andryskova L., Brazdil M., Nikolova Y.S. Impact of prenatal stress on amygdala anatomy in young adulthood: timing and location matter. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2022;7(2):231–238. PubMed
Jones S.L., Dufoix R., Laplante D.P., Elgbeili G., Patel R., Chakravarty M.M., King S., Pruessner J.C. Larger amygdala volume mediates the association between prenatal maternal stress and higher levels of externalizing behaviors: sex specific effects in project ice storm. Front. Hum. Neurosci. 2019;13 doi: 10.3389/fnhum.2019.00144. PubMed DOI PMC
Evans A.C. Networks of anatomical covariance. Neuroimage. 2013;80:489–504. PubMed
Bullmore E.d., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev.Neurosci. 2009;10(3):186–198. PubMed
Yee Y., Fernandes D.J., French L., Ellegood J., Cahill L.S., Vousden D.A., Spencer Noakes L., Scholz J., van Eede M.C., Nieman B.J., Sled J.G., Lerch J.P. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. Neuroimage. 2018;179:357–372. PubMed
Kelly C., Toro R., Di Martino A., Cox C.L., Bellec P., Castellanos F.X., Milham M.P. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage. 2012;61(4):1129–1142. PubMed PMC
Gong G., He Y., Chen Z.J., Evans A.C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage. 2012;59(2):1239–1248. PubMed
Raznahan A., Lerch J., Lee N., Greenstein D., Wallace G., Stockman M., Clasen L., Shaw P., Giedd J. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron. 2011;72(5):873–884. PubMed PMC
Pezawas L., Meyer-Lindenberg A., Goldman A.L., Verchinski B.A., Chen G., Kolachana B.S., Egan M.F., Mattay V.S., Hariri A.R., Weinberger D.R. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol. Psychiatry. 2008;13(7):709–716. PubMed
Schmitt J.E., Yi J., Calkins M.E., Ruparel K., Roalf D.R., Cassidy A., Souders M.C., Satterthwaite T.D., McDonald-McGinn D.M., Zackai E.H., Gur R.C., Emanuel B.S., Gur R.E. Disrupted anatomic networks in the 22q11.2 deletion syndrome. Neuroimage Clin. 2016;12:420–428. PubMed PMC
Gilmore J.H., Schmitt J.E., Knickmeyer R.C., Smith J.K., Lin W., Styner M., Gerig G., Neale M.C. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum. Brain Mapp. 2010;(8):1174–1182. doi: 10.1002/hbm.20926. PubMed DOI PMC
Voss P., Zatorre R.J. Early visual deprivation changes cortical anatomical covariance in dorsal-stream structures. Neuroimage. 2015;108:194–202. PubMed
Sun D., Peverill M.R., Swanson C.S., McLaughlin K.A., Morey R.A. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder. J. Psychiatr. Res. 2018;98:70–77. PubMed PMC
Teicher M.H., Anderson C.M., Ohashi K., Polcari A. Childhood maltreatment: altered network centrality of cingulate, precuneus, temporal pole and insula. Biol. Psychiatry. 2014;76(4):297–305. PubMed PMC
Nikolova Y.S., Misquitta K.A., Rocco B.R., Prevot T.D., Knodt A.R., Ellegood J., Voineskos A.N., Lerch J.P., Hariri A.R., Sibille E., Banasr M. Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species. Transl. Psychiatry. 2018;8(1) doi: 10.1038/s41398-017-0083-5. PubMed DOI PMC
Lee A., Poh J.S., Wen D.J., Guillaume B., Chong Y.-S., Shek L.P., Fortier M.V., Qiu A. Long-term influences of prenatal maternal depressive symptoms on the amygdala-prefrontal circuitry of the offspring from birth to early childhood. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2019;4(11):940–947. PubMed
Kessler R.C., Berglund P., Demler O., Jin R., Merikangas K.R., Walters E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry. 2005;62(6):593–602. PubMed
Sporns O. The non-random brain: efficiency, economy, and complex dynamics. Front. Comput. Neurosci. 2011;5:5. PubMed PMC
Sutherland S., Brunwasser S.M. Sex differences in vulnerability to prenatal stress: a review of the recent literature. Curr. Psychiatry Rep. 2018;20(11):102. PubMed PMC
Ruigrok A.N.V., Salimi-Khorshidi G., Lai M.-C., Baron-Cohen S., Lombardo M.V., Tait R.J., Suckling J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014;39:34–50. PubMed PMC
Class Q.A., Lichtenstein P., Långström N., D'Onofrio B.M. Timing of prenatal maternal exposure to severe life events and adverse pregnancy outcomes: a population study of 2.6 million pregnancies. Psychosom. Med. 2011;73(3):234–241. PubMed PMC
Piler, P., Kandrnal, V., Kukla, L., Andryskova, L., Svancara, J., Jarkovsky, J., et al. 2017. Cohort profile: the European longitudinal study of pregnancy and childhood (ELSPAC) in the Czech Republic. Int. J. Epidemiol. 46(5), 1379-f. PubMed PMC
McNair D.M., Lorr M., Droppleman L.F. Educational and Industrial Testing Services; San Diego, CA: 1971. Manual for the Profile of Mood States.
Boyd, A., Golding, J., Macleod, J., Lawlor, D.A., Fraser, A., Henderson, J., et al. Cohort profile: the ‘Children of the 90s’—the index offspring of the Avon longitudinal study of parents and children. Int. J. Epidemiol. 422013. p. 111-27. PubMed PMC
Fraser A., Macdonald-Wallis C., Tilling K., Boyd A., Golding J., Davey Smith G., Henderson J., Macleod J., Molloy L., Ness A., Ring S., Nelson S.M., Lawlor D.A. Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013;42(1):97–110. PubMed PMC
Northstone K., Lewcock M., Groom A., Boyd A., Macleod J., Timpson N., Wells N. The Avon Longitudinal Study of Parents and Children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome Open Res. 2019;4:51. PubMed PMC
Oldham S., Fornito A. The development of brain network hubs. Dev Cogn Neurosci. 2019;36:100607. doi: 10.1016/j.dcn.2018.12.005. PubMed DOI PMC
Nosarti C., Mechelli A., Herrera A., Walshe M., Shergill S.S., Murray R.M., Rifkin L., Allin M.P.G. Structural covariance in the cortex of very preterm adolescents: a voxel-based morphometry study. Hum. Brain Mapp. 2011;32(10):1615–1625. PubMed PMC
Paus T., Toro R., Leonard G., Lerner J.V., Lerner R.M., Perron M., Pike G.B., Richer L., Steinberg L. Morphological properties of the action-observation cortical network in adolescents with low and high resistance to peer influence. Soc. Neurosci. 2008;3(3-4):303–316. PubMed
Barbazanges A., Piazza P.V., Le Moal M., Maccari S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 1996;16(12):3943–3949. PubMed PMC
Harris A., Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011;59(3):279–289. PubMed
Cottrell E.C., Seckl J.R. Prenatal stress, glucocorticoids and the programming of adult disease. Front. Behav. Neurosci. 2009;3:19. PubMed PMC
Entringer S., Buss C., Wadhwa P.D. Prenatal stress, development, health and disease risk: a psychobiological perspective-2015 Curt Richter Award Paper. Psychoneuroendocrinology. 2015;62:366–375. PubMed PMC
Buss C., Entringer S., Wadhwa P.D. Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology. Sci Signal. 2012;5(245):pt7. PubMed PMC
Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 2: mechanisms. Nat. Rev. Endocrinol. 2014;10(7):403–411. PubMed
Matthews S.G. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res. 2000;47(3):291–300. PubMed
Mueller B.R., Bale T.L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 2008;28(36):9055–9065. PubMed PMC
Saif Z., Hodyl N.A., Stark M.J., Fuller P.J., Cole T., Lu N., Clifton V.L. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight. Placenta. 2015;36(7):723–730. PubMed PMC
Teicher M.H., Samson J.A., Polcari A., McGreenery C.E. Sticks, stones, and hurtful words: relative effects of various forms of childhood maltreatment. Am. J. Psychiatry. 2006;163(6):993–1000. PubMed
Owen D., Matthews S.G. Glucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptors. Endocrinology. 2003;144(7):2775–2784. PubMed
Teicher M.H., Tomoda A., Andersen S.L. Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann. N. Y. Acad. Sci. 2006;1071:313–323. PubMed
Yong Ping E., Laplante D.P., Elgbeili G., Hillerer K.M., Brunet A., O'Hara M.W., et al. Prenatal maternal stress predicts stress reactivity at 2(1/2) years of age: the Iowa Flood Study. Psychoneuroendocrinology. 2015;56:62–78. PubMed
Kang H.J., Kawasawa Y.I., Cheng F., Zhu Y., Xu X., Li M., Sousa A.M.M., Pletikos M., Meyer K.A., Sedmak G., Guennel T., Shin Y., Johnson M.B., Krsnik Ž., Mayer S., Fertuzinhos S., Umlauf S., Lisgo S.N., Vortmeyer A., Weinberger D.R., Mane S., Hyde T.M., Huttner A., Reimers M., Kleinman J.E., Šestan N. Spatio-temporal transcriptome of the human brain. Nature. 2011;478(7370):483–489. PubMed PMC
Hariri A.R., Holmes A. Finding translation in stress research. Nat. Neurosci. 2015;18(10):1347–1352. PubMed PMC
Aboud K.S., Huo Y., Kang H., Ealey A., Resnick S.M., Landman B.A., Cutting L.E. Structural covariance across the lifespan: Brain development and aging through the lens of inter-network relationships. Hum. Brain Mapp. 2019;40(1):125–136. PubMed PMC