Maturation of Hippocampal Subfields in Young Adulthood and Its Relationship With Cognition

. 2025 Aug 01 ; 46 (11) : e70296.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40747970

Grantová podpora
NU20J-04-00022 Agentura Pro Zdravotnický Výzkum České Republiky
FP7-IEF-2013 Research Executive Agency
6485124 Research Executive Agency
24-12183M Grantová Agentura České Republiky
857560 Horizon 2020 Framework Programme
CEITEC 2020 The Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/17 043/0009632 The Ministry of Education, Youth and Sports
LM2018129 The Ministry of Education, Youth and Sports
LM2023069 The Ministry of Education, Youth and Sports
LQ1601 The Ministry of Education, Youth and Sports
LX22NPO5107 The Ministry of Education, Youth and Sports
Marie Curie Intra-European Fellowship for Career Development
European Union-Next Generation EU

The hippocampus is a key brain region for memory and cognitive functions, which consists of distinct subregions with different developmental trajectories throughout adolescence. However, trajectories of hippocampal subfield change in young adulthood remain uncharacterized, as is their potential relationship with cortical brain aging and cognitive ability during this time. We conducted two magnetic resonance imaging (MRI) follow-ups of a prenatal birth cohort in young adulthood and studied the effects of chronological age and cortical brain age on the volume of hippocampal subfields in the early 20s (n = 109; 51% men) and late 20s (n = 251; 53% men) and how these age-related volumetric changes might relate to full-scale IQ (FSIQ). We showed that CA1 and CA4DG subfields continue to grow in the third decade of life and that this growth can be observed both at the level of chronological age as well as estimated cortical brain age at both MRI timepoints. Moreover, in men, a larger size of these age-related subfields was associated with higher FSIQ, and the deviations between cortical brain age and chronological age mediated the relationships between right CA1 and FSIQ, as well as right CA4DG and FSIQ. These findings reveal that coordinated patterns of advanced cortical brain aging and hippocampal maturation may confer a cognitive advantage in young adulthood.

Zobrazit více v PubMed

Aumont, E. , Bussy A., Bedard M. A., et al. 2023. “Hippocampal Subfield Associations With Memory Depend on Stimulus Modality and Retrieval Mode.” Brain Communications 5: fcad309. PubMed PMC

Babcock, K. R. , Page J. S., Fallon J. R., and Webb A. E.. 2021. “Adult Hippocampal Neurogenesis in Aging and Alzheimer's Disease.” Stem Cell Reports 16: 681–693. PubMed PMC

Bergmann, O. , Spalding K. L., and Frisén J.. 2015. “Adult Neurogenesis in Humans.” Cold Spring Harbor Perspectives in Biology 7: a018994. PubMed PMC

Bettio, L. E. B. , Rajendran L., and Gil‐Mohapel J.. 2017. “The Effects of Aging in the Hippocampus and Cognitive Decline.” Neuroscience and Biobehavioral Reviews 79: 66–86. PubMed

Braak, H. , and Braak E.. 1991. “Neuropathological Stageing of Alzheimer‐Related Changes.” Acta Neuropathologica 82: 239–259. PubMed

Cyranowski, J. M. , Frank E., Young E., and Shear M. K.. 2000. “Adolescent Onset of the Gender Difference in Lifetime Rates of Major Depression: A Theoretical Model.” Archives of General Psychiatry 57: 21–27. PubMed

Danese, A. , Moffitt T. E., Harrington H., et al. 2009. “Adverse Childhood Experiences and Adult Risk Factors for Age‐Related Disease: Depression, Inflammation, and Clustering of Metabolic Risk Markers.” Archives of Pediatrics & Adolescent Medicine 163: 1135–1143. PubMed PMC

Daugherty, A. M. , Bender A. R., Raz N., and Ofen N.. 2016. “Age Differences in Hippocampal Subfield Volumes From Childhood to Late Adulthood.” Hippocampus 26: 220–228. PubMed PMC

de Flores, R. , Mutlu J., Bejanin A., et al. 2017. “Intrinsic Connectivity of Hippocampal Subfields in Normal Elderly and Mild Cognitive Impairment Patients.” Human Brain Mapping 38: 4922–4932. PubMed PMC

Doran, S. , Carey D., Knight S., Meaney J. F., Kenny R. A., and De Looze C.. 2023. “Relationship Between Hippocampal Subfield Volumes and Cognitive Decline in Healthy Subjects.” Frontiers in Aging Neuroscience 15: 1284619. PubMed PMC

Ducharme, S. , Albaugh M. D., Nguyen T. V., et al. 2016. “Trajectories of Cortical Thickness Maturation in Normal Brain Development—The Importance of Quality Control Procedures.” NeuroImage 125: 267–279. PubMed PMC

Fischl, B. , and Dale A. M.. 2000. “Measuring the Thickness of the Human Cerebral Cortex From Magnetic Resonance Images.” Proceedings of the National Academy of Sciences of the United States of America 97: 11050–11055. PubMed PMC

Franke, K. , and Gaser C.. 2012. “Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer's Disease.” GeroPsych 25: 235–245.

Fraser, M. A. , Walsh E. I., Shaw M. E., et al. 2021. “Longitudinal Trajectories of Hippocampal Volume in Middle to Older Age Community Dwelling Individuals.” Neurobiology of Aging 97: 97–105. PubMed

Guo, J. , Huang X., Dou L., et al. 2022. “Aging and Aging‐Related Diseases: From Molecular Mechanisms to Interventions and Treatments.” Signal Transduction and Targeted Therapy 7: 391. PubMed PMC

Harvey, P. O. , Fossati P., Pochon J. B., et al. 2005. “Cognitive Control and Brain Resources in Major Depression: An fMRI Study Using the n‐Back Task.” NeuroImage 26: 860–869. PubMed

Hayes, A. F. 2018. Introduction to Mediation, Moderation, and Conditional Process Analysis. A Regression‐Based Approach. 2nd ed. Guilford Press.

Izzo, J. , Andreassen O. A., Westlye L. T., and van der Meer D.. 2020. “The Association Between Hippocampal Subfield Volumes in Mild Cognitive Impairment and Conversion to Alzheimer's Disease.” Brain Research 1728: 146591. PubMed

Kälin, A. M. , Park M. T., Chakravarty M. M., et al. 2017. “Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer's Disease Patients.” Frontiers in Aging Neuroscience 9: 38. PubMed PMC

Kempermann, G. , Song H., and Gage F. H.. 2015. “Neurogenesis in the Adult Hippocampus.” Cold Spring Harbor Perspectives in Biology 7: a018812. PubMed PMC

Keresztes, A. , Raffington L., Bender A. R., Bögl K., Heim C., and Shing Y. L.. 2022. “Longitudinal Developmental Trajectories Do Not Follow Cross‐Sectional Age Associations in Hippocampal Subfield and Memory Development.” Developmental Cognitive Neuroscience 54: 101085. PubMed PMC

Lee, J. K. , Ekstrom A. D., and Ghetti S.. 2014. “Volume of Hippocampal Subfields and Episodic Memory in Childhood and Adolescence.” NeuroImage 94: 162–171. PubMed

Mareckova, K. , Marecek R., Andryskova L., Brazdil M., and Nikolova Y. S.. 2020. “Maternal Depressive Symptoms During Pregnancy and Brain Age in Young Adult Offspring: Findings From a Prenatal Birth Cohort.” Cerebral Cortex 30: 3991–3999. PubMed

Mareckova, K. , Marecek R., Jani M., et al. 2023. “Association of Maternal Depression During Pregnancy and Recent Stress With Brain Age Among Adult Offspring.” JAMA Network Open 6: e2254581. PubMed PMC

McEwen, B. S. , and Magarinos A. M.. 2001. “Stress and Hippocampal Plasticity: Implications for the Pathophysiology of Affective Disorders.” Human Psychopharmacology 16: S7–s19. PubMed

Mostafa, M. , Disouky A., and Lazarov O.. 2025. “Therapeutic Modulation of Neurogenesis to Improve Hippocampal Plasticity and Cognition in Aging and Alzheimer's Disease.” Neurotherapeutics 22: e00580. PubMed PMC

Paizanis, E. , Hamon M., and Lanfumey L.. 2007. “Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy.” Neural Plasticity 2007: 73754–73757. PubMed PMC

Pardoe, H. R. , and Kuzniecky R.. 2018. “NAPR: A Cloud‐Based Framework for Neuroanatomical Age Prediction.” Neuroinformatics 16: 43–49. PubMed

Pipitone, J. , Park M. T., Winterburn J., et al. 2014. “Multi‐Atlas Segmentation of the Whole Hippocampus and Subfields Using Multiple Automatically Generated Templates.” NeuroImage 101: 494–512. PubMed

Poranen‐Clark, T. , von Bonsdorff M. B., Törmäkangas T., et al. 2016. “Intellectual Ability in Young Adulthood as an Antecedent of Physical Functioning in Older Age.” Age and Ageing 45: 727–731. PubMed PMC

Rasmussen, C. E. , and Williams C. K. I.. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), 266. MIT Press.

Sapolsky, R. M. 2001. “Depression, Antidepressants, and the Shrinking Hippocampus.” Proceedings of the National Academy of Sciences of the United States of America 98: 12320–12322. PubMed PMC

Shaw, P. , Kabani N. J., Lerch J. P., et al. 2008. “Neurodevelopmental Trajectories of the Human Cerebral Cortex.” Journal of Neuroscience 28: 3586–3594. PubMed PMC

Shing, Y. L. , Rodrigue K. M., Kennedy K. M., et al. 2011. “Hippocampal Subfield Volumes: Age, Vascular Risk, and Correlation With Associative Memory.” Frontiers in Aging Neuroscience 3: 2. PubMed PMC

Soumya Kumari, L. K. , and Sundarrajan R.. 2024. “A Review on Brain Age Prediction Models.” Brain Research 1823: 148668. PubMed

Spalding, K. L. , Bergmann O., Alkass K., et al. 2013. “Dynamics of Hippocampal Neurogenesis in Adult Humans.” Cell 153: 1219–1227. PubMed PMC

Tam, W.‐C. C. 2004. “The Utility of Seven‐Subtest Short Forms of the Wechsler Adult Intelligence Scale‐III in Young Adults.”

Tamnes, C. K. , Bos M. G. N., van de Kamp F. C., Peters S., and Crone E. A.. 2018. “Longitudinal Development of Hippocampal Subregions From Childhood to Adulthood.” Developmental Cognitive Neuroscience 30: 212–222. PubMed PMC

Tipping, M. E. 2001. “Sparse Bayesian Learning and the Relevance Vector Machine.” Journal of Machine Learning Research 1: 211–244.

Toda, T. , Parylak S. L., Linker S. B., and Gage F. H.. 2019. “The Role of Adult Hippocampal Neurogenesis in Brain Health and Disease.” Molecular Psychiatry 24: 67–87. PubMed PMC

Tondelli, M. , Wilcock G. K., Nichelli P., De Jager C. A., Jenkinson M., and Zamboni G.. 2012. “Structural MRI Changes Detectable up to Ten Years Before Clinical Alzheimer's Disease.” Neurobiology of Aging 33: 825.e25. PubMed

United Nations Populations Fund . 2004. “Ageing.” https://www.unfpa.org/ageing#:~:text=The%20world%20is%20ageing%20rapidly,to%20United%20Nations%20population%20projections.

Villeda, S. A. , Plambeck K. E., Middeldorp J., et al. 2014. “Young Blood Reverses Age‐Related Impairments in Cognitive Function and Synaptic Plasticity in Mice.” Nature Medicine 20: 659–663. PubMed PMC

Winterburn, J. L. , Pruessner J. C., Chavez S., et al. 2013. “A Novel In Vivo Atlas of Human Hippocampal Subfields Using High‐Resolution 3 T Magnetic Resonance Imaging.” NeuroImage 74: 254–265. PubMed

Wisse, L. E. , Biessels G. J., Heringa S. M., et al. 2014. “Hippocampal Subfield Volumes at 7T in Early Alzheimer's Disease and Normal Aging.” Neurobiology of Aging 35: 2039–2045. PubMed

Wolf, D. , Fischer F. U., de Flores R., Chételat G., and Fellgiebel A.. 2015. “Differential Associations of Age With Volume and Microstructure of Hippocampal Subfields in Healthy Older Adults.” Human Brain Mapping 36: 3819–3831. PubMed PMC

Zammit, A. R. , Ezzati A., Zimmerman M. E., Lipton R. B., Lipton M. L., and Katz M. J.. 2017. “Roles of Hippocampal Subfields in Verbal and Visual Episodic Memory.” Behavioural Brain Research 317: 157–162. PubMed PMC

Zheng, F. , Cui D., Zhang L., et al. 2018. “The Volume of Hippocampal Subfields in Relation to Decline of Memory Recall Across the Adult Lifespan.” Frontiers in Aging Neuroscience 10: 320. PubMed PMC

Zhu, B. , Chen C., Dang X., et al. 2017. “Hippocampal Subfields' Volumes Are More Relevant to Fluid Intelligence Than Verbal Working Memory.” Intelligence 61: 169–175.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...