Accelerated Epigenetic Aging and Its Role in Brain Dynamics and Cognition in Young Adulthood

. 2025 Jul ; 46 (10) : e70261.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40568998

Grantová podpora
24-12183M Grantová Agentura České Republiky
NU20J-04-00022 Agentura Pro Zdravotnický Výzkum České Republiky
CEITEC 2020 Czech Ministry of Education, Youth and Sport
LM2023069 Czech Ministry of Education, Youth and Sport
LQ1601 Czech Ministry of Education, Youth and Sport
LX22NPO5107 Czech Ministry of Education, Youth and Sport
857560 HORIZON EUROPE Health

Accelerated epigenetic aging has been associated with changes in cognition. However, due to the lack of neuroimaging epigenetics studies, it is still unclear whether accelerated epigenetic. Aging in young adulthood might underlie the relationship between altered brain dynamics and cognitive functioning. We conducted neuroimaging epigenetics follow-up of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort in young adulthood and tested the possible mediatory role of accelerated epigenetic aging in the relationship between dynamic functional connectivity (DFC) and worse cognition. A total of 240 young adults (51% men; 28-30 years, all of European ancestry) participated in the neuroimaging epigenetics follow-up. Buccal swabs were collected to assess DNA methylation and calculate epigenetic aging using Horvath's epigenetic clock. Full-scale IQ was assessed using the Wechsler adult intelligence scale (WAIS). Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired using a 3T Siemens Prisma MRI scanner, and DFC was assessed using mixture factor analysis, revealing information about the coverage of different DFC states. In women (but not men), lower coverage of DFC state 4 and thus lower frequency of epochs with high connectivity within the default mode network and between default mode, fronto-parietal, and visual networks was associated with lower full-scale IQ (AdjR2 = 0.05, std. beta = 0.245, p = 0.008). This relationship was mediated by accelerated epigenetic aging (ab = 7.660, SE = 4.829, 95% CI [0.473, 19.264]). In women, accelerated epigenetic aging in young adulthood mediates the relationship between altered brain dynamics and cognitive functioning. Prevention of cognitive decline should target women already in young adulthood.

Zobrazit více v PubMed

Andrews‐Hanna, J. R. , Snyder A. Z., Vincent J. L., et al. 2007. “Disruption of Large‐Scale Brain Systems in Advanced Aging.” Neuron 56, no. 5: 924–935. 10.1016/j.neuron.2007.10.038. PubMed DOI PMC

Bateman, R. J. , Xiong C., Benzinger T. L. S., et al. 2012. “Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease.” New England Journal of Medicine 367, no. 9: 795–804. 10.1056/NEJMoa1202753. PubMed DOI PMC

Beam, C. R. , Kaneshiro C., Jang J. Y., Reynolds C. A., Pedersen N. L., and Gatz M.. 2018. “Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer's Disease.” Journal of Alzheimer's Disease 64, no. 4: 1077–1083. 10.3233/JAD-180141. PubMed DOI PMC

Belsky, D. W. , Caspi A., Corcoran D. L., et al. 2022. “DunedinPACE, a DNA Methylation Biomarker of the Pace of Aging.” eLife 11: e73420. 10.7554/eLife.73420. PubMed DOI PMC

Braak, H. , and Braak E.. 1997. “Frequency of Stages of Alzheimer‐Related Lesions in Different Age Categories.” Neurobiology of Aging 18, no. 4: 351–357. 10.1016/S0197-4580(97)00056-0. PubMed DOI

Caliński, T. , and Harabasz J.. 1974. “A Dendrite Method for Cluster Analysis.” Communications in Statistics 3, no. 1: 1–27. 10.1080/03610927408827101. DOI

Damoiseaux, J. S. 2017. “Effects of Aging on Functional and Structural Brain Connectivity.” NeuroImage 160: 32–40. 10.1016/j.neuroimage.2017.01.077. PubMed DOI

Damoiseaux, J. S. , Beckmann C. F., Arigita E. J. S., et al. 2008. “Reduced Resting‐State Brain Activity in the “Default Network” in Normal Aging.” Cerebral Cortex 18, no. 8: 1856–1864. 10.1093/cercor/bhm207. PubMed DOI

Davies, D. L. , and Bouldin D. W.. 1979. “A Cluster Separation Measure.” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI‐1, no. 2: 224–227. 10.1109/TPAMI.1979.4766909. PubMed DOI

Degerman, S. , Josefsson M., Nordin Adolfsson A., et al. 2017. “Maintained Memory in Aging Is Associated With Young Epigenetic Age.” Neurobiology of Aging 55: 167–171. 10.1016/j.neurobiolaging.2017.02.009. PubMed DOI

Demirovic, J. , Prineas R., Loewenstein D., et al. 2003. “Prevalence of Dementia in Three Ethnic Groups: The South Florida Program on Aging and Health.” Annals of Epidemiology 13, no. 6: 472–478. 10.1016/S1047-2797(02)00437-4. PubMed DOI

Duchek, J. M. , Balota D. A., Thomas J. B., et al. 2013. “Relationship Between Stroop Performance and Resting State Functional Connectivity in Cognitively Normal Older Adults.” Neuropsychology 27, no. 5: 516. 10.1037/a0033402. PubMed DOI PMC

Dunn, J. C. 1974. “Well‐Separated Clusters and Optimal Fuzzy Partitions.” Journal of Cybernetics 4, no. 1: 95–104. 10.1080/01969727408546059. DOI

Foo, H. , Mather K. A., Jiang J., Thalamuthu A., Wen W., and Sachdev P. S.. 2020. “Genetic Influence on Ageing‐Related Changes in Resting‐State Brain Functional Networks in Healthy Adults: A Systematic Review.” Neuroscience & Biobehavioral Reviews 113: 98–110. 10.1016/j.neubiorev.2020.03.011. PubMed DOI

Geerligs, L. , Renken R. J., Saliasi E., Maurits N. M., and Lorist M. M.. 2015. “A Brain‐Wide Study of Age‐Related Changes in Functional Connectivity.” Cerebral Cortex 25, no. 7: 1987–1999. 10.1093/cercor/bhu012. PubMed DOI

Glasser, M. F. , Coalson T. S., Robinson E. C., et al. 2016. “A Multi‐Modal Parcellation of Human Cerebral Cortex.” Nature 536, no. 7615: 171–178. 10.1038/nature18933. PubMed DOI PMC

Glasser, M. F. , Sotiropoulos S. N., Wilson J. A., et al. 2013. “The Minimal Preprocessing Pipelines for the Human Connectome Project.” NeuroImage 80: 105–124. 10.1016/j.neuroimage.2013.04.127. PubMed DOI PMC

Grabowska, A. 2017. “Sex on the Brain: Are Gender‐Dependent Structural and Functional Differences Associated With Behavior?” Journal of Neuroscience Research 95, no. 1–2: 200–212. 10.1002/jnr.23953. PubMed DOI

Graves, A. J. , Danoff J. S., Kim M., et al. 2024. “Accelerated Epigenetic Age Is Associated With Whole‐Brain Functional Connectivity and Impaired Cognitive Performance in Older Adults.” Scientific Reports 14, no. 1: 9646. 10.1038/s41598-024-60311-3. PubMed DOI PMC

Greicius, M. D. , Srivastava G., Reiss A. L., and Menon V.. 2004. “Default‐Mode Network Activity Distinguishes Alzheimer's Disease From Healthy Aging: Evidence From Functional MRI.” Proceedings of the National Academy of Sciences of the United States of America 101, no. 13: 4637–4642. 10.1073/pnas.0308627101. PubMed DOI PMC

Hannum, G. , Guinney J., Zhao L., et al. 2013. “Genome‐Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates.” Molecular Cell 49, no. 2: 359–367. 10.1016/j.molcel.2012.10.016. PubMed DOI PMC

Hausman, H. K. , O'Shea A., Kraft J. N., et al. 2020. “The Role of Resting‐State Network Functional Connectivity in Cognitive Aging.” Frontiers in Aging Neuroscience 12: 177. 10.3389/fnagi.2020.00177. PubMed DOI PMC

Hayes, A. F. 2017. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression‐Based Approach (2. vyd., Roč. 2017). Guilford Press.

He, W. , Goodkind D., and Kowal P.. 2015. “An Aging World.” In International Population Reports, United States Census Bureau. U.S. Government Publishing Office.

Hickman, R. , Faustin A., and Wisniewski T.. 2016. “Alzheimer Disease and Its Growing Epidemic: Risk Factors, Biomarkers and the Urgent Need for Therapeutics.” Neurologic Clinics 34, no. 4: 941–953. 10.1016/j.ncl.2016.06.009. PubMed DOI PMC

Horvath, S. 2013. “DNA Methylation Age of Human Tissues and Cell Types.” Genome Biology 14, no. 10: 3156. 10.1186/gb-2013-14-10-r115. PubMed DOI PMC

Horvath, S. , Gurven M., Levine M. E., et al. 2016. “An Epigenetic Clock Analysis of Race/Ethnicity, Sex, and Coronary Heart Disease.” Genome Biology 17, no. 1: 171. 10.1186/s13059-016-1030-0. PubMed DOI PMC

Horvath, S. , Pirazzini C., Bacalini M. G., et al. 2015. “Decreased Epigenetic Age of PBMCs From Italian Semi‐Supercentenarians and Their Offspring.” Aging (Albany NY) 7, no. 12: 1159–1170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712339/. PubMed PMC

Horvath, S. , and Ritz B. R.. 2015. “Increased Epigenetic Age and Granulocyte Counts in the Blood of Parkinson's Disease Patients.” Aging (Albany NY) 7, no. 12: 1130–1142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712337/. PubMed PMC

Leonardi, N. , and Van De Ville D.. 2015. “On Spurious and Real Fluctuations of Dynamic Functional Connectivity During Rest.” NeuroImage 104: 430–436. 10.1016/j.neuroimage.2014.09.007. PubMed DOI

Levine, M. E. , Lu A. T., Quach A., et al. 2018. “An Epigenetic Biomarker of Aging for Lifespan and Healthspan.” Aging 10, no. 4: 573–591. 10.18632/aging.101414. PubMed DOI PMC

Lu, A. T. , Quach A., Wilson J. G., et al. 2019. “DNA Methylation GrimAge Strongly Predicts Lifespan and Healthspan.” Aging 11, no. 2: 303–327. 10.18632/aging.101684. PubMed DOI PMC

Mareckova, K. , Marecek R., Andryskova L., Brazdil M., and Nikolova Y. S.. 2020. “Maternal Depressive Symptoms During Pregnancy and Brain Age in Young Adult Offspring: Findings From a Prenatal Birth Cohort.” Cerebral Cortex 30, no. 7: 3991–3999. 10.1093/cercor/bhaa014. PubMed DOI

Marečková, K. , Pačínková A., Klasnja A., et al. 2020. “Epigenetic Clock as a Correlate of Anxiety.” NeuroImage: Clinical 28: 102458. 10.1016/j.nicl.2020.102458. PubMed DOI PMC

Mareckova, K. , Pacinkova A., Marecek R., et al. 2023. “Longitudinal Study of Epigenetic Aging and Its Relationship With Brain Aging and Cognitive Skills in Young Adulthood.” Frontiers in Aging Neuroscience 15: 1215957. 10.3389/fnagi.2023.1215957. PubMed DOI PMC

Milligan, G. W. 1980. “An Examination of the Effect of Six Types of Error Perturbation on Fifteen Clustering Algorithms.” Psychometrika 45, no. 3: 325–342. 10.1007/BF02293907. DOI

Pardoe, H. R. , and Kuzniecky R.. 2018. “NAPR: A Cloud‐Based Framework for Neuroanatomical Age Prediction.” Neuroinformatics 16, no. 1: 43–49. 10.1007/s12021-017-9346-9. PubMed DOI

Paul, K. C. , Binder A. M., Horvath S., et al. 2021. “Accelerated Hematopoietic Mitotic Aging Measured by DNA Methylation, Blood Cell Lineage, and Parkinson's Disease.” BMC Genomics 22, no. 1: 696. 10.1186/s12864-021-08009-y. PubMed DOI PMC

Piler, P. , Kandrnal V., Kukla L., et al. 2017. “Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in The Czech Republic.” International Journal of Epidemiology 46, no. 5: 1379–1379f. 10.1093/ije/dyw091. PubMed DOI PMC

Reynaud, C. , and Miccoli S.. 2019. “Population Ageing in Italy After the 2008 Economic Crisis: A Demographic Approach.” Futures 105: 17–26. 10.1016/j.futures.2018.07.011. DOI

Rousseeuw, P. J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis.” Journal of Computational and Applied Mathematics 20: 53–65. 10.1016/0377-0427(87)90125-7. DOI

Ruigrok, A. N. V. , Salimi‐Khorshidi G., Lai M.‐C., et al. 2014. “A Meta‐Analysis of Sex Differences in Human Brain Structure.” Neuroscience & Biobehavioral Reviews 39: 34–50. 10.1016/j.neubiorev.2013.12.004. PubMed DOI PMC

Sakoğlu, Ü. , Pearlson G. D., Kiehl K. A., Wang Y. M., Michael A. M., and Calhoun V. D.. 2010. “A Method for Evaluating Dynamic Functional Network Connectivity and Task‐Modulation: Application to Schizophrenia.” Magnetic Resonance Materials in Physics, Biology and Medicine 23, no. 5: 351–366. 10.1007/s10334-010-0197-8. PubMed DOI PMC

Shakil, S. , Lee C.‐H., and Keilholz S. D.. 2016. “Evaluation of Sliding Window Correlation Performance for Characterizing Dynamic Functional Connectivity and Brain States.” NeuroImage 133: 111–128. 10.1016/j.neuroimage.2016.02.074. PubMed DOI PMC

Shaw, D. J. , Czekóová K., Mareček R., Havlice Špiláková B., and Brázdil M.. 2023. “The Interacting Brain: Dynamic Functional Connectivity Among Canonical Brain Networks Dissociates Cooperative From Competitive Social Interactions.” NeuroImage 269: 119933. 10.1016/j.neuroimage.2023.119933. PubMed DOI

Shaw, E. E. , Schultz A. P., Sperling R. A., and Hedden T.. 2015. “Functional Connectivity in Multiple Cortical Networks Is Associated With Performance Across Cognitive Domains in Older Adults.” Brain Connectivity 5, no. 8: 505–516. 10.1089/brain.2014.0327. PubMed DOI PMC

Snyder, H. M. , Asthana S., Bain L., et al. 2016. “Sex Biology Contributions to Vulnerability to Alzheimer's Disease: A Think Tank Convened by the Women's Alzheimer's Research Initiative.” Alzheimer's & Dementia: The Journal of the Alzheimer's Association 12, no. 11: 1186–1196. 10.1016/j.jalz.2016.08.004. PubMed DOI PMC

Sorg, C. , Riedl V., Mühlau M., et al. 2007. “Selective Changes of Resting‐State Networks in Individuals at Risk for Alzheimer's Disease.” Proceedings of the National Academy of Sciences of the United States of America 104, no. 47: 18760–18765. 10.1073/pnas.0708803104. PubMed DOI PMC

Tam, W.‐C. C. 2004. “The Utility of Seven‐Subtest Short Forms of the Wechsler Adult Intelligence Scale‐III in Young Adults.” Journal of Psychoeducational Assessment 22, no. 1: 62–71. 10.1177/073428290402200105. DOI

Tang, M.‐X. , Cross P., Andrews H., et al. 2001. “Incidence of AD in African‐Americans, Caribbean Hispanics, and Caucasians in Northern Manhattan.” Neurology 56, no. 1: 49–56. 10.1212/WNL.56.1.49. PubMed DOI

Teschendorff, A. E. , Marabita F., Lechner M., et al. 2013. “A Beta‐Mixture Quantile Normalization Method for Correcting Probe Design Bias in Illumina Infinium 450 k DNA Methylation Data.” Bioinformatics 29, no. 2: 189–196. 10.1093/bioinformatics/bts680. PubMed DOI PMC

Thompson, G. J. , Magnuson M. E., Merritt M. D., et al. 2013. “Short‐Time Windows of Correlation Between Large‐Scale Functional Brain Networks Predict Vigilance Intraindividually and Interindividually.” Human Brain Mapping 34, no. 12: 3280–3298. 10.1002/hbm.22140. PubMed DOI PMC

Tian, Y. , Morris T. J., Webster A. P., et al. 2017. “ChAMP: Updated Methylation Analysis Pipeline for Illumina BeadChips.” Bioinformatics 33, no. 24: 3982–3984. 10.1093/bioinformatics/btx513. PubMed DOI PMC

Tomasi, D. , and Volkow N. D.. 2012. “Aging and Functional Brain Networks.” Molecular Psychiatry 17, no. 5: 549–558. 10.1038/mp.2011.81. PubMed DOI PMC

Vaccarino, V. , Huang M., Wang Z., et al. 2021. “Epigenetic Age Acceleration and Cognitive Decline: A Twin Study.” Journals of Gerontology: Series A 76, no. 10: 1854–1863. 10.1093/gerona/glab047. PubMed DOI PMC

van Eijk, L. , Zhu D., Couvy‐Duchesne B., et al. 2021. “Are Sex Differences in Human Brain Structure Associated With Sex Differences in Behavior?” Psychological Science 32, no. 8: 1183–1197. 10.1177/0956797621996664. PubMed DOI PMC

Wang, L. , LaViolette P., O'Keefe K., et al. 2010. “Intrinsic Connectivity Between the Hippocampus and Posteromedial Cortex Predicts Memory Performance in Cognitively Intact Older Individuals.” NeuroImage 51, no. 2: 910–917. 10.1016/j.neuroimage.2010.02.046. PubMed DOI PMC

Wechsler, D. 2008. Wechsler Adult Intelligence Scale—Fourth Edition (WAIS‐IV). APA PsycTests. 10.1037/t15169-000. DOI

Zhang, M. , Tartaglia M. C., Moreno D., et al. 2017. “DNA Methylation Age‐Acceleration Is Associated With Disease Duration and Age at Onset in C9orf72 Patients.” Acta Neuropathologica 134, no. 2: 271–279. 10.1007/s00401-017-1713-y. PubMed DOI PMC

Zhao, J. , Manza P., Wiers C., et al. 2020. “Age‐Related Decreases in Interhemispheric Resting‐State Functional Connectivity and Their Relationship With Executive Function.” Frontiers in Aging Neuroscience 12: 20. 10.3389/fnagi.2020.00020. PubMed DOI PMC

Zhou, A. , Wu Z., Zaw Phyo A. Z., Torres D., Vishwanath S., and Ryan J.. 2022. “Epigenetic Aging as a Biomarker of Dementia and Related Outcomes: A Systematic Review.” Epigenomics 14, no. 18: 1125–1138. 10.2217/epi-2022-0209. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...