solid-state synthesis
Dotaz
Zobrazit nápovědu
Drug discovery efforts largely depend on access to structural diversity. Multicomponent reactions allow for time-efficient chemical transformations and provide advanced intermediates with three or four points of diversification for further expansion to a structural variety of organic molecules. This review is aimed at solid-phase syntheses of small molecules involving isocyanide-based multicomponent reactions. The majority of all reported syntheses employ the Ugi four-component reaction. The review also covers the Passerini and Groebke-Blackburn-Bienaymé reactions. To date, the main advantages of the solid-phase approach are the ability to prepare chemical libraries intended for biological screening and elimination of the isocyanide odor. However, the potential of multicomponent reactions has not been fully exploited. The unexplored avenues of these reactions, including chiral frameworks, DNA-encoded libraries, eco-friendly synthesis, and chiral auxiliary reactions, are briefly outlined.
Nearly monodispersed superparamagnetic maghemite nanoparticles (15-20nm) were prepared by a one-step thermal decomposition of iron(II) acetate in air at 400 degrees C. The presented synthetic route is simple, cost effective and allows to prepare the high-quality superparamagnetic particles in a large scale. The as-prepared particles were exploited for the development of magnetic nanocomposites with the possible applicability in medicine and biochemistry. For the purposes of the MRI diagnostics, the maghemite particles were simply dispersed in the bentonite matrix. The resulting nanocomposite represents very effective and cheap oral negative contrast agent for MRI of the gastrointestinal tract and reveals excellent contrast properties, fully comparable with those obtained for commercial contrast material. The results of the clinical research of this maghemite-bentonite contrast agent for imaging of the small bowel are discussed. For biochemical applications, the primary functionalization of the prepared maghemite nanoparticles with chitosan was performed. In this way, a highly efficient magnetic carrier for protein immobilization was obtained as demonstrated by conjugating thermostable raffinose-modified trypsin (RMT) using glutaraldehyde. The covalent conjugation resulted in a further increase in trypsin thermostability (T(50)=61 degrees C) and elimination of its autolysis. Consequently, the immobilization of RMT allowed fast in-solution digestion of proteins and their identification by MALDI-TOF mass spectrometry.
- MeSH
- difrakce rentgenového záření MeSH
- enzymy imobilizované MeSH
- financování organizované MeSH
- gastrointestinální trakt patologie MeSH
- kontrastní látky MeSH
- magnetická rezonanční tomografie MeSH
- mikroskopie elektronová rastrovací MeSH
- transmisní elektronová mikroskopie MeSH
- trypsin MeSH
- železité sloučeniny MeSH
Complex forming capabilities of [(η(6)-p-cymene)Ru(H2O)3](2+) with aminohydroxamates (2-amino-N-hydroxyacetamide (α-alahaH), 3-amino-N-hydroxypropanamide (β-alahaH) and 4-amino-N-hydroxybutanamide (γ-abhaH)) having the primary amino group in different chelatable position to the hydroxamic function were studied by pH-potentiometry, NMR and MS methods. Formation of stable [O,O] and mixed [O,O][N,N] chelated mono- and dinuclear species is detected in partially slow with α-alahaH and β-alahaH or in fast processes with γ-abhaH and the formation constants of the complexes present in aqueous solution are reported. Synthesis, spectral (NMR, IR) and ESI mass spectrometric characterization of novel dinuclear α-alaninehydroximato complexes containing the half-sandwich type Ru(II) core is described. The crystal and molecular structure of [{(η(6)-p-cymene)Ru}2(μ(2)-α-alahaH-1)(H2O)Br]Br∙H2O (1) and [{(η(6)-p-cymene)Ru}2(μ(2)-α-alahaH-1)(H2O)Cl]BF4∙H2O (2) was determined by single crystal X-ray diffraction method. In the complexes one half-sandwich core is coordinated by a hydroxamate [O,O] chelate while the other one by [Namino,Nhydroxamate] fashion of the bridging ligand. In both cases the remaining coordination sites of one of the Ru cores are taken by a halide ion whiles the other one by a water molecule. Reaction of 2 with 9-methylguanine indicates the N7 coordination of this simple DNA model. Complexes 1 and 2 were tested for their in vitro cytotoxicity using human-derived cancer cell lines (A2780, MCF-7, SKOV-3, HCT-116, HeLa) and showed no anti-proliferative activity in the micromolar concentration range.
- MeSH
- GABA analogy a deriváty chemie MeSH
- guanin analogy a deriváty chemie MeSH
- HCT116 buňky MeSH
- HeLa buňky MeSH
- kationty dvojmocné MeSH
- komplexní sloučeniny chemická syntéza farmakologie MeSH
- krystalografie rentgenová MeSH
- kyseliny hydroxamové chemie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární modely MeSH
- monoterpeny chemie MeSH
- nádorové buněčné linie MeSH
- organokovové sloučeniny chemická syntéza farmakologie MeSH
- protinádorové látky chemická syntéza farmakologie MeSH
- ruthenium chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In the field of tissue engineering and wound healing, materials based on molecules naturally occurring in the organism, such as peptides, polysaccharides, etc., are being intensively developed and applied. In this paper, we reviewed the use of polysaccharides as carriers for solid state peptide synthesis, as they have been the subject of many studies and potential applications. The combination of polysaccharides and peptides can impart new properties to the materials obtained, and thus open an interesting new route to possible applications.
... SOLID-STATE CHEMISTRY 1. The 1 -2-3 Superconductor YBaaCusO? ... ... The Molecular Sieve Zeolite-X 37 Ion Exchange in Microporous Solids 38 High-Pressure Synthesis 40 -- ... ... Synthesis of (?????????????^???? in Liquid Ammonia 85 Metal-Ammonia Solutions 85 V -- V! ... ... Electrolytic Synthesis of KaSaOs 93 Electrolytic Preparation 93 -- Part III. ... ... Microscale Synthesis of Vaska’s Complex 1??1(??)[?(???5)?] ...
3rd ed. 272 s.
The present work aims to the development of innovative new derivatives of chitosan that can be used for medical applications. This innovation is based on the synthesis and characterization of chitosan-g-aminoanthracene derivatives. Thus, N-(anthracen-9-yl)-4,6-dichloro-[1,3,5]-triazin-2-amine (AT) reacted with chitosan by the following steps: at first, cyanuric chloride reacted with 9-aminoanthracene to obtain N-(anthracen-9-yl)-4,6-dichloro-[1,3,5]-triazin-2-amine (AT), then the AT reacted with chitosan to obtain (CH-g-AT). The final product of CH-g-AT was separated, purified and re-crystallized by dioxane. The structure of the prepared chitosan derivatives was confirmed by FTIR-ATR, solid-NMR, TGA, X-RD, and DSC. The new chitosan derivatives showed fluorescence spectra in liquid and in solid state as well. CH-g-AT showed also high antibacterial activity against gram -ve species (Escherichia coli).
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- chitosan chemická syntéza chemie farmakologie MeSH
- Escherichia coli účinky léků MeSH
- fluorescenční barviva chemická syntéza chemie farmakologie MeSH
- stabilita léku MeSH
- techniky syntetické chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
New approaches to the synthesis of 4,7-dichloro-1,10-phenanthrolines and their corresponding 9H-carbazol-9-yl-, 10H-phenothiazin-10-yl- and pyrrolidin-1-yl derivatives were developed. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, electronic absorption spectroscopy and multinuclear NMR in both solution and solid state including 15N CP/MAS NMR. The structures of 5-fluoro-2,9-dimethyl-4,7-di(pyrrolidin-1-yl)-1,10-phenanthroline (5d), 4,7-di(9H-carbazol-9-yl)-9-oxo-9,10-dihydro-1,10-phenanthroline-5-carbonitrile (6a) and 4,7-di(10H-phenothiazin-10-yl)-1,10-phenanthroline-5-carbonitrile (6b) were determined by single-crystal X-ray diffraction measurements. The nucleophilic substitutions of hydrogen followed by oxidation produced compounds 6a and 6b. The electrochemical properties of selected 1,10-phenanthrolines were investigated using cyclic voltammetry and compared with commercially available reference 1,10-phenanthrolin-5-amine (5l). The spatial distribution of frontier molecular orbitals of the selected compounds has been calculated by density functional theory (DFT). It was shown that potentials of reduction and oxidation were in consistence with the level of HOMO and LUMO energies.
There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
- Publikační typ
- časopisecké články MeSH
High-silica zeolites, some of the most important and widely used catalysts in industry, have potential for application across a wide range of traditional and emerging technologies. The many structural topologies of zeolites have a variety of potential uses, so a strong drive to create new zeolites exists. Here, we present a protocol, the assembly-disassembly-organization-reassembly (ADOR) process, for a relatively new method of preparing these important solids. It allows the synthesis of new high-silica zeolites (Si/Al >1,000), whose synthesis is considered infeasible with traditional (solvothermal) methods, offering new topologies that may find novel applications. We show how to identify the optimal conditions (e.g., duration of reaction, temperature, acidity) for ADOR, which is a complex process with different possible outcomes. Following the protocol will allow researchers to identify the different products that are possible from a reaction without recourse to repetitive and time-consuming trial and error. In developing the protocol, germanium-containing UTL zeolites were subjected to hydrolysis conditions using both water and hydrochloric acid as media, which provides an understanding of the effects of temperature and pH on the disassembly (D) and organization (O) steps of the process that define the potential products. Samples were taken from the ongoing reaction periodically over a minimum of 8 h, and each sample was analyzed using powder X-ray diffraction to yield a time course for the reaction at each set of conditions; selected samples were analyzed using transmission electron microscopy and solid-state NMR spectroscopy.
- MeSH
- anorganická chemie metody MeSH
- časové faktory MeSH
- difrakce rentgenového záření MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů MeSH
- magnetická rezonanční spektroskopie MeSH
- oxid křemičitý chemická syntéza MeSH
- prášky, zásypy, pudry MeSH
- teplota MeSH
- voda chemie MeSH
- zeolity chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hydrophobic nonaggregating metal-free azaphthalocyanines (AzaPc) of the tetrapyrazinoporphyrazine type were synthesized, characterized, and used for oligonucleotide labeling. Both 3'-end and 5'-end labeling methods using solid phase synthesis suitable for automatic processes in the DNA/RNA synthesizer were developed. The hydrophobic character of AzaPc enabled the anchoring of the conjugates on reverse phase of the oligonucleotide purification cartridge, thus enabling their simple purification. AzaPc did not show any fluorescence and extremely low singlet oxygen quantum yields (Φ(Δ) = 0.015-0.018 in DMF) in a monomeric state due to ultrafast intramolecular charge transfer. That is why they were investigated as a new dark quencher structural type. They profit particularly from absorption in a wide range of wavelengths (300-740 nm) that covers all fluorophores used in hybridization assays nowadays. As an example, quenching efficiency was evaluated in a simple hybridization assay using monolabeled probes. AzaPc-based probes efficiently quenched both fluorescein and Cy5 fluorescence by both resonance energy transfer and contact quenching. The results were compared with three established dark quenchers, and the AzaPc exerted better (BHQ-1 and BHQ-2) or comparable (BBQ-650) quenching efficiencies for both fluorophores.
- MeSH
- absorpce MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- oligonukleotidové sondy chemická syntéza chemie genetika MeSH
- oligonukleotidy chemická syntéza chemie genetika MeSH
- pyraziny chemie MeSH
- pyrroly chemie MeSH
- sekvence nukleotidů MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH