Insight into the mechanism of the thermal reduction of graphite oxide: deuterium-labeled graphite oxide is the key
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25894311
DOI
10.1021/acsnano.5b01463
Knihovny.cz E-zdroje
- Klíčová slova
- exfoliation, graphene, graphite oxide, isotope labeling, mechanism,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatography-mass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxide's thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.
∞Jülich Aachen Research Alliance Fundamentals of Future Information Technology 52425 Jülich Germany
Peter Grünberg Institute Forschungszentrum Jülich 52425 Jülich Germany
Citace poskytuje Crossref.org
Synthesis and Applications of Graphene Oxide
Synthesis, Composition, and Properties of Partially Oxidized Graphite Oxides