Synthesis, Composition, and Properties of Partially Oxidized Graphite Oxides

. 2019 Jul 25 ; 12 (15) : . [epub] 20190725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31349591

The aim of this paper is to prepare and characterize partially-oxidized graphite oxide and consider if it is possible to affect the level of oxidation of particles by an adjustment of the oxidizing agent. Several samples were prepared, using different amounts of oxidizing agent. The samples were subsequently analyzed. The C/O ratio was evaluated from XPS, EDS, and EA. The amount and type of individual oxygen functionalities were characterized by XPS, Raman spectroscopy, and cyclic voltammetry. The structure was studied by SEM and XRD. Thermal stability was investigated by STA-MS in argon atmosphere. The results can be useful in order to design simple technology for graphite oxide synthesis with required oxygen content.

Zobrazit více v PubMed

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Li X.S., Magnuson C.W., Venugopal A., An J.H., Suk J.W., Han B.Y., Borysiak M., Cai W.W., Velamakanni A., Zhu Y.W., et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010;10:4328–4334. doi: 10.1021/nl101629g. PubMed DOI

Sturala J., Luxa J., Pumera M., Sofer Z. Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem. Eur. J. 2018;24:5992–6006. doi: 10.1002/chem.201704192. PubMed DOI

Li Y., Chopra N. Progress in large-scale production of graphene. Part 1: Chemical methods. JOM. 2015;67:34–43. doi: 10.1007/s11837-014-1236-0. DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Jankovsky O., Kuckova S.H., Pumera M., Simek P., Sedmidubsky D., Sofer Z. Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. N. J. Chem. 2014;38:5700–5705. doi: 10.1039/C4NJ00871E. DOI

Li Y., Chopra N. Progress in large-scale production of graphene. Part 2: Vapor methods. JOM. 2015;67:44–52. doi: 10.1007/s11837-014-1237-z. DOI

Lee S., Lee K., Zhong Z.H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010;10:4702–4707. doi: 10.1021/nl1029978. PubMed DOI

Reina A., Jia X.T., Ho J., Nezich D., Son H.B., Bulovic V., Dresselhaus M.S., Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9:30–35. doi: 10.1021/nl801827v. PubMed DOI

Dimiev A., Kosynkin D.V., Sinitskii A., Slesarev A., Sun Z.Z., Tour J.M. Layer-by-layer removal of graphene for device patterning. Science. 2011;331:1168–1172. doi: 10.1126/science.1199183. PubMed DOI

Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259.

Ruess G., Vogt F. Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd-uber den ort der aktiven eigenschaften am kohlenstoffkristall. Mon. Chem. 1948;78:222–242. doi: 10.1007/BF01141527. DOI

Clauss A., Plass R., Boehm H.P., Hofmann U. Untersuchungen zur struktur des graphitoxyds. Z. Anorg. Allg. Chem. 1957;291:205–220. doi: 10.1002/zaac.19572910502. DOI

Mermoux M., Chabre Y., Rousseau A. Ftir and c-13 nmr-study of graphite oxide. Carbon. 1991;29:469–474. doi: 10.1016/0008-6223(91)90216-6. DOI

Lerf A., He H.Y., Forster M., Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI

Nakajima T., Mabuchi A., Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26:357–361. doi: 10.1016/0008-6223(88)90227-8. DOI

Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006;18:2740–2749. doi: 10.1021/cm060258+. DOI

Jankovsky O., Marvan P., Novacek M., Luxa J., Mazanek V., Klimova K., Sedmidubsky D., Sofer Z. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today. 2016;4:45–53. doi: 10.1016/j.apmt.2016.06.001. DOI

Bannov A.G., Manakhov A., Shibaev A.A., Ukhina A.V., Polčák J., Maksimovskii E.A. Synthesis dynamics of graphite oxide. Thermochim. Acta. 2018;663:165–175. doi: 10.1016/j.tca.2018.03.017. DOI

Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI

Sofer Z., Simek P., Jankovsky O., Sedmidubsky D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI

Dimiev A., Kosynkin D.V., Alemany L.B., Chaguine P., Tour J.M. Pristine graphite oxide. J. Am. Chem. Soc. 2012;134:2815–2822. doi: 10.1021/ja211531y. PubMed DOI

Nakajima T., Matsuo Y. Formation process and structure of graphite oxide. Carbon. 1994;32:469–475. doi: 10.1016/0008-6223(94)90168-6. DOI

Gao W. Graphene Oxide. Springer; Berlin, Germany: 2015. The chemistry of graphene oxide; pp. 61–95.

Talyzin A.V., Mercier G., Klechikov A., Hedenstrom M., Johnels D., Wei D., Cotton D., Opitz A., Moons E. Brodie vs. hummers graphite oxides for preparation of multi-layered materials. Carbon. 2017;115:430–440. doi: 10.1016/j.carbon.2016.12.097. DOI

Kang J.H., Kim T., Choi J., Park J., Kim Y.S., Chang M.S., Jung H., Park K.T., Yang S.J., Park C.R. Hidden second oxidation step of hummers method. Chem. Mater. 2016;28:756–764. doi: 10.1021/acs.chemmater.5b03700. DOI

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Staudenmeier L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898;31:1481–1499. doi: 10.1002/cber.18980310237. DOI

Ulrich Hofmann E.K. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 1937;234:311–336. doi: 10.1002/zaac.19372340405. DOI

Simek P., Klimova K., Sedmidubsky D., Jankovsky O., Pumera M., Sofer Z. Towards graphene iodide: Iodination of graphite oxide. Nanoscale. 2015;7:261–270. doi: 10.1039/C4NR05219F. PubMed DOI

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. Acs Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI

Jankovsky O., Jirickova A., Luxa J., Sedmidubsky D., Pumera M., Sofer Z. Fast synthesis of highly oxidized graphene oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI

Peng L., Xu Z., Liu Z., Wei Y.Y., Sun H.Y., Li Z., Zhao X.L., Gao C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015;6:9. doi: 10.1038/ncomms6716. PubMed DOI PMC

Sofer Z., Luxa J., Jankovsky O., Sedmidubsky D., Bystron T., Pumera M. Synthesis of graphene oxide by oxidation of graphite with ferrate(vi) compounds: Myth or reality? Angew. Chem. Int. Edit. 2016;55:11965–11969. doi: 10.1002/anie.201603496. PubMed DOI

Joshi R.K., Alwarappan S., Yoshimura M., Sahajwalla V., Nishina Y. Graphene oxide: The new membrane material. Appl. Mater. Today. 2015;1:1–12. doi: 10.1016/j.apmt.2015.06.002. DOI

Jankovsky O., Storti E., Schmidt G., Dudczig S., Sofer Z., Aneziris C.G. Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Appl. Mater. Today. 2018;13:24–31. doi: 10.1016/j.apmt.2018.08.002. DOI

Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969. PubMed DOI

Jankovsky O., Lojka M., Jan L.X., Sedmidubsky D., Tomanec O., Zboril R., Pumera M., Sofer Z. Selective bromination of graphene oxide by the hunsdiecker reaction. Chem. Eur. J. 2017;23:10473–10479. doi: 10.1002/chem.201702031. PubMed DOI

Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A new member of the graphene family: Graphene acid. Chem. Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI

Novacek M., Jankovsky O., Luxa J., Sedmidubsky D., Pumera M., Fila V., Lhotka M., Klimova K., Matejkova S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI

Klimova K., Pumera M., Luxa J., Jankovsky O., Sedmidubsky D., Matejkova S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212. doi: 10.1021/acs.jpcc.6b08088. DOI

Jankovsky O., Simek P., Klimova K., Sedmidubsky D., Pumera M., Sofer Z. Highly selective removal of ga3+ ions from al3+/ga3+ mixtures using graphite oxide. Carbon. 2015;89:121–129. doi: 10.1016/j.carbon.2015.03.025. DOI

Kaniyoor A., Ramaprabhu S. A raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012;2:13. doi: 10.1063/1.4756995. DOI

Wang Y., Alsmeyer D.C., McCreery R.L. Raman-spectroscopy of carbon materials-structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI

Kudin K.N., Ozbas B., Schniepp H.C., Prud’homme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Arrais A., Diana E., Boccaleri E. A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J. Mater. Sci. 2006;41:6035–6045. doi: 10.1007/s10853-006-0511-z. DOI

Sofer Z., Jankovsky O., Simek P., Sedmidubsky D., Sturala J., Kosina J., Miksova R., Mackova A., Mikulics M., Pumera M. Insight into the mechanism of the thermal reduction of graphite oxide: Deuterium-labeled graphite oxide is the key. ACS Nano. 2015;9:5478–5485. doi: 10.1021/acsnano.5b01463. PubMed DOI

Jankovsky O., Lojka M., Novacek M., Luxa J., Sedmidubsky D., Pumera M., Kosina J., Sofer Z. Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chem. 2016;18:6618–6629. doi: 10.1039/C6GC02491B. DOI

Eng A.Y.S., Ambrosi A., Chua C.K., Sanek F., Sofer Z., Pumera M. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants. Chem. Eur. J. 2013;19:12673–12683. doi: 10.1002/chem.201301889. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...