Synthesis, Composition, and Properties of Partially Oxidized Graphite Oxides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31349591
PubMed Central
PMC6695847
DOI
10.3390/ma12152367
PII: ma12152367
Knihovny.cz E-zdroje
- Klíčová slova
- graphene derivatives, graphite oxide, modified Tour method, partial oxidation,
- Publikační typ
- časopisecké články MeSH
The aim of this paper is to prepare and characterize partially-oxidized graphite oxide and consider if it is possible to affect the level of oxidation of particles by an adjustment of the oxidizing agent. Several samples were prepared, using different amounts of oxidizing agent. The samples were subsequently analyzed. The C/O ratio was evaluated from XPS, EDS, and EA. The amount and type of individual oxygen functionalities were characterized by XPS, Raman spectroscopy, and cyclic voltammetry. The structure was studied by SEM and XRD. Thermal stability was investigated by STA-MS in argon atmosphere. The results can be useful in order to design simple technology for graphite oxide synthesis with required oxygen content.
Zobrazit více v PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Li X.S., Magnuson C.W., Venugopal A., An J.H., Suk J.W., Han B.Y., Borysiak M., Cai W.W., Velamakanni A., Zhu Y.W., et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010;10:4328–4334. doi: 10.1021/nl101629g. PubMed DOI
Sturala J., Luxa J., Pumera M., Sofer Z. Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem. Eur. J. 2018;24:5992–6006. doi: 10.1002/chem.201704192. PubMed DOI
Li Y., Chopra N. Progress in large-scale production of graphene. Part 1: Chemical methods. JOM. 2015;67:34–43. doi: 10.1007/s11837-014-1236-0. DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Jankovsky O., Kuckova S.H., Pumera M., Simek P., Sedmidubsky D., Sofer Z. Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. N. J. Chem. 2014;38:5700–5705. doi: 10.1039/C4NJ00871E. DOI
Li Y., Chopra N. Progress in large-scale production of graphene. Part 2: Vapor methods. JOM. 2015;67:44–52. doi: 10.1007/s11837-014-1237-z. DOI
Lee S., Lee K., Zhong Z.H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010;10:4702–4707. doi: 10.1021/nl1029978. PubMed DOI
Reina A., Jia X.T., Ho J., Nezich D., Son H.B., Bulovic V., Dresselhaus M.S., Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9:30–35. doi: 10.1021/nl801827v. PubMed DOI
Dimiev A., Kosynkin D.V., Sinitskii A., Slesarev A., Sun Z.Z., Tour J.M. Layer-by-layer removal of graphene for device patterning. Science. 2011;331:1168–1172. doi: 10.1126/science.1199183. PubMed DOI
Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259.
Ruess G., Vogt F. Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd-uber den ort der aktiven eigenschaften am kohlenstoffkristall. Mon. Chem. 1948;78:222–242. doi: 10.1007/BF01141527. DOI
Clauss A., Plass R., Boehm H.P., Hofmann U. Untersuchungen zur struktur des graphitoxyds. Z. Anorg. Allg. Chem. 1957;291:205–220. doi: 10.1002/zaac.19572910502. DOI
Mermoux M., Chabre Y., Rousseau A. Ftir and c-13 nmr-study of graphite oxide. Carbon. 1991;29:469–474. doi: 10.1016/0008-6223(91)90216-6. DOI
Lerf A., He H.Y., Forster M., Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI
Nakajima T., Mabuchi A., Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26:357–361. doi: 10.1016/0008-6223(88)90227-8. DOI
Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006;18:2740–2749. doi: 10.1021/cm060258+. DOI
Jankovsky O., Marvan P., Novacek M., Luxa J., Mazanek V., Klimova K., Sedmidubsky D., Sofer Z. Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today. 2016;4:45–53. doi: 10.1016/j.apmt.2016.06.001. DOI
Bannov A.G., Manakhov A., Shibaev A.A., Ukhina A.V., Polčák J., Maksimovskii E.A. Synthesis dynamics of graphite oxide. Thermochim. Acta. 2018;663:165–175. doi: 10.1016/j.tca.2018.03.017. DOI
Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI
Sofer Z., Simek P., Jankovsky O., Sedmidubsky D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI
Dimiev A., Kosynkin D.V., Alemany L.B., Chaguine P., Tour J.M. Pristine graphite oxide. J. Am. Chem. Soc. 2012;134:2815–2822. doi: 10.1021/ja211531y. PubMed DOI
Nakajima T., Matsuo Y. Formation process and structure of graphite oxide. Carbon. 1994;32:469–475. doi: 10.1016/0008-6223(94)90168-6. DOI
Gao W. Graphene Oxide. Springer; Berlin, Germany: 2015. The chemistry of graphene oxide; pp. 61–95.
Talyzin A.V., Mercier G., Klechikov A., Hedenstrom M., Johnels D., Wei D., Cotton D., Opitz A., Moons E. Brodie vs. hummers graphite oxides for preparation of multi-layered materials. Carbon. 2017;115:430–440. doi: 10.1016/j.carbon.2016.12.097. DOI
Kang J.H., Kim T., Choi J., Park J., Kim Y.S., Chang M.S., Jung H., Park K.T., Yang S.J., Park C.R. Hidden second oxidation step of hummers method. Chem. Mater. 2016;28:756–764. doi: 10.1021/acs.chemmater.5b03700. DOI
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Staudenmeier L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898;31:1481–1499. doi: 10.1002/cber.18980310237. DOI
Ulrich Hofmann E.K. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 1937;234:311–336. doi: 10.1002/zaac.19372340405. DOI
Simek P., Klimova K., Sedmidubsky D., Jankovsky O., Pumera M., Sofer Z. Towards graphene iodide: Iodination of graphite oxide. Nanoscale. 2015;7:261–270. doi: 10.1039/C4NR05219F. PubMed DOI
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. Acs Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Jankovsky O., Jirickova A., Luxa J., Sedmidubsky D., Pumera M., Sofer Z. Fast synthesis of highly oxidized graphene oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI
Peng L., Xu Z., Liu Z., Wei Y.Y., Sun H.Y., Li Z., Zhao X.L., Gao C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015;6:9. doi: 10.1038/ncomms6716. PubMed DOI PMC
Sofer Z., Luxa J., Jankovsky O., Sedmidubsky D., Bystron T., Pumera M. Synthesis of graphene oxide by oxidation of graphite with ferrate(vi) compounds: Myth or reality? Angew. Chem. Int. Edit. 2016;55:11965–11969. doi: 10.1002/anie.201603496. PubMed DOI
Joshi R.K., Alwarappan S., Yoshimura M., Sahajwalla V., Nishina Y. Graphene oxide: The new membrane material. Appl. Mater. Today. 2015;1:1–12. doi: 10.1016/j.apmt.2015.06.002. DOI
Jankovsky O., Storti E., Schmidt G., Dudczig S., Sofer Z., Aneziris C.G. Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Appl. Mater. Today. 2018;13:24–31. doi: 10.1016/j.apmt.2018.08.002. DOI
Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969. PubMed DOI
Jankovsky O., Lojka M., Jan L.X., Sedmidubsky D., Tomanec O., Zboril R., Pumera M., Sofer Z. Selective bromination of graphene oxide by the hunsdiecker reaction. Chem. Eur. J. 2017;23:10473–10479. doi: 10.1002/chem.201702031. PubMed DOI
Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A new member of the graphene family: Graphene acid. Chem. Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI
Novacek M., Jankovsky O., Luxa J., Sedmidubsky D., Pumera M., Fila V., Lhotka M., Klimova K., Matejkova S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI
Klimova K., Pumera M., Luxa J., Jankovsky O., Sedmidubsky D., Matejkova S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212. doi: 10.1021/acs.jpcc.6b08088. DOI
Jankovsky O., Simek P., Klimova K., Sedmidubsky D., Pumera M., Sofer Z. Highly selective removal of ga3+ ions from al3+/ga3+ mixtures using graphite oxide. Carbon. 2015;89:121–129. doi: 10.1016/j.carbon.2015.03.025. DOI
Kaniyoor A., Ramaprabhu S. A raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012;2:13. doi: 10.1063/1.4756995. DOI
Wang Y., Alsmeyer D.C., McCreery R.L. Raman-spectroscopy of carbon materials-structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI
Kudin K.N., Ozbas B., Schniepp H.C., Prud’homme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Arrais A., Diana E., Boccaleri E. A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J. Mater. Sci. 2006;41:6035–6045. doi: 10.1007/s10853-006-0511-z. DOI
Sofer Z., Jankovsky O., Simek P., Sedmidubsky D., Sturala J., Kosina J., Miksova R., Mackova A., Mikulics M., Pumera M. Insight into the mechanism of the thermal reduction of graphite oxide: Deuterium-labeled graphite oxide is the key. ACS Nano. 2015;9:5478–5485. doi: 10.1021/acsnano.5b01463. PubMed DOI
Jankovsky O., Lojka M., Novacek M., Luxa J., Sedmidubsky D., Pumera M., Kosina J., Sofer Z. Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chem. 2016;18:6618–6629. doi: 10.1039/C6GC02491B. DOI
Eng A.Y.S., Ambrosi A., Chua C.K., Sanek F., Sofer Z., Pumera M. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants. Chem. Eur. J. 2013;19:12673–12683. doi: 10.1002/chem.201301889. PubMed DOI