graphite oxide Dotaz Zobrazit nápovědu
The paper reports laboratory preparation, characterization and in vitro evaluation of antibacterial activity of ZnO/graphite nanocomposites. Zinc chloride and sodium carbonate served as precursors for synthesis of zinc oxide, while micromilled and natural graphite were used as the matrix for ZnO nanoparticles anchoring. During the reaction of ZnCl2 with saturated aqueous solution of Na2CO3a new compound is created. During the calcination at the temperature of 500 °C this new precursors decomposes and ZnO nanoparticles are formed. Composites ZnO/graphite with 50 wt.% of ZnO particles were prepared. X-ray powder diffraction and Raman microspectroscopy served as phase-analytical methods. Scanning electron microscopy technique was used for morphology characterization of the prepared samples and EDS mapping for visualization of elemental distribution. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity and antibacterial activity at dark conditions. Common human pathogens served as microorganism for antibacterial assay. Antibacterial activity of ZnO/graphite composites could be based on photocatalytic reaction; however there is a role of Zn(2+) ions on the resulting antibacterial activity which proved the experiments in dark condition. There is synergistic effect between Zn(2+) caused and reactive oxygen species caused antibacterial activity.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- difrakce rentgenového záření MeSH
- fotochemické procesy MeSH
- grafit chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- mikroskopie elektronová rastrovací MeSH
- nanokompozity chemie MeSH
- oxid zinečnatý chemie farmakologie MeSH
- Ramanova spektroskopie MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. METHODS: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the fluka code [A. Ferrari et al., "fluka: A multi-particle transport code," in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., "The fluka Code: Developments and challenges for high energy and medical applications," Nucl. Data Sheets 120, 211-214 (2014)], to partial fluence corrections measured experimentally. RESULTS: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. CONCLUSIONS: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary particle fluence. A correction factor, F(d), has been established to relate fluence corrections defined theoretically to partial fluence corrections derived experimentally. The findings presented here are also relevant to water and tissue-equivalent-plastic materials given their carbon content.
- MeSH
- algoritmy MeSH
- cyklotrony MeSH
- dávka záření MeSH
- grafit MeSH
- kalorimetrie přístrojové vybavení metody MeSH
- metoda Monte Carlo MeSH
- nejistota MeSH
- počítačová simulace MeSH
- protonová terapie přístrojové vybavení metody MeSH
- protony MeSH
- teplota MeSH
- tlak MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and <6% (n=5, 2µM glucose), respectively. Newly devised sparked Cu/Ni graphite SPEs enable glucose sensing with distinct advantages over existing glucose chemical sensors in terms of cost, fabrication simplicity, disposability, and adaptation of green methods in sensor's development.
The carbon nanomaterials and congeners, e.g., graphene or graphene oxide (GO), dispose of numerous unique properties, which are not necessarily intrinsic but might be related to a content of impurities. The oxidation step of GO synthesis introduces a considerable amount of metallic species. Therefore, large-scale purification is an actual scientific challenge. Here we describe new purification technique (salt‑washing), which is based on three consecutive steps: (a) aggregation of GO sheets with NaCl (b) washing of the aggregates and (c) removing of the salt to afford purified GO (swGO). The considerably improved purity of swGO was demonstrated by ICP and EPR spectroscopy. The microscopic methods (TEM with SEAD, AFM) proved that the salt-washing does not affect the morphology or concentration of defects, showing the aggregation of GO with NaCl is fully reversible. The eligibility of swGO for biomedical applications was tested using fibroblastic cell cultures. The determined IC50 values clearly show a strong correlation between the purity of samples and cytotoxicity. Although the purification decreases cytotoxicity of GO, the IC50 values are still low proving that cytotoxic effect is not only impurities-related but also an intrinsic property. These findings may represent a serious limitation for usage of GO in biomedical applications.
- MeSH
- chlorid sodný toxicita MeSH
- grafit * toxicita MeSH
- nanostruktury * MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
This review summarizes and discusses electrophoretic methods for the fabrication deposited graphene and graphene-based structures. Graphenes are commonly dispersed in organic solvents or in water. Deposition procedures are performed mostly under constant voltage and deposition time seems to be an important parameter for influence prepared graphene structures. It was shown that electrophoretically deposited graphene layers have excellent properties suitable for electrochemical sensors and biosensors construction, e.g. high electrical conductivity and large surface area. Electrophoretic deposition enables also preparation of material which combines graphene with metal nanoparticles or polymers.
The increasing use of neonicotinoids in systematic seed treatment to crops is a serious cause of pollution of water resources and environment. Consequently, food sources can get eventually contaminated. To this end, it is desirable to develop suitable and effective platforms in order to obtain low-cost and sensitive sensors for neonicotinoids detection. In this work, graphene oxide modified electrodes were used as highly efficient electrochemical sensors for detection of two common insecticides - thiamethoxam and imidacloprid. The proposed sensor responded linearly in the concentration range of 10-200µmolL(-1) for both analytes and the detection limits were determined as low as 8.3µmolL(-1) and 7.9µmolL(-1) for thiamethoxam and imidacloprid, respectively. Analytical performance was also evaluated on spiked water and honey samples.
- MeSH
- analýza potravin ekonomika metody MeSH
- biosenzitivní techniky ekonomika metody MeSH
- chemické látky znečišťující vodu analýza MeSH
- dusíkaté sloučeniny analýza MeSH
- elektrochemické techniky ekonomika metody MeSH
- elektrody MeSH
- grafit chemie MeSH
- imidazoly analýza MeSH
- insekticidy analýza MeSH
- kontaminace potravin analýza MeSH
- limita detekce MeSH
- med analýza MeSH
- monitorování životního prostředí ekonomika metody MeSH
- oxaziny analýza MeSH
- oxidy chemie MeSH
- řeky chemie MeSH
- thiazoly analýza MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
This study investigates an environmentally benign approach to generate platinum nanoparticles (Pt NP) supported on the reduced graphene oxide (RGO) by non-edible gum waste of gum kondagogu (GK). The reaction adheres to the green chemistry approach by using an aqueous medium and a nontoxic natural reductant-GK-whose abundant hydroxyl groups facilitate in the reduction process of platinum salt and helps as well in the homogenous distribution of ensued Pt NP on RGO sheets. Scanning Electron Microscopy (SEM) confirmed the formation of kondagogu gum/reduced graphene oxide framed spherical platinum nanoparticles (RGO-Pt) with an average particle size of 3.3 ± 0.6 nm, as affirmed by Transmission Electron Microscopy (TEM). X-ray Diffraction (XRD) results indicated that the Pt NPs formed are crystalline with a face-centered cubic structure, while morphological analysis by XRD and Raman spectroscopy revealed a simultaneous reduction of GO and Pt. The hydrogenation of 4-nitrophenol could be accomplished in the superior catalytic performance of RGO-Pt. The current strategy emphasizes a simple, fast and environmentally benign technique to generate low-cost gum waste supported nanoparticles with a commendable catalytic activity that can be exploited in environmental applications.
Understanding the interaction between graphene oxide (GO) and the biomolecules is fundamentally essential, especially for disease- and drug-related peptides and proteins. In this study, the interaction between GO and albumins (bovine serum albumin, human serum albumin, and bovine alpha-lactalbumin) has been performed by fluorescence and UV-Vis spectroscopic techniques. The fluorescence quenching mechanism between GO and aromatic acids residues with intrinsic fluorescence was determined as mainly static quenching in combination with dynamic quenching. The optimal conditions for the most effective affinity between albumins and GO have been estimated at neutral pH and room temperature. The strong impact of the size of graphene oxide on the interaction between proteins and graphene oxide has been confirmed, as well. The interaction between GO and albumins has been examined as electrostatic and hydrophobic. The electrostatic interaction was confirmed by pH effect, while the hydrophobic interaction was proved by the presence of Poloxamer188. The CD spectra of albumins exhibit decreasing helicity in the secondary structure of albumins upon the addition of GO. However, no significant changes in position and shape of characteristic negative bands have been noted. Mentioned changes indicate the successful interaction between GO and proteins, the predominantly α-helical structure of albumins has been preserved.
- MeSH
- cirkulární dichroismus MeSH
- grafit chemie MeSH
- koncentrace vodíkových iontů MeSH
- laktalbumin chemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- oxidy chemie MeSH
- sérový albumin hovězí chemie MeSH
- sérový albumin chemie MeSH
- skot MeSH
- teplota MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cationic quaternized carbon dots (QCDs) and anionic graphene oxide sheets (GO) are combined via non-covalent interactions following a self-assembly pathway to form highly biocompatible and fluorescent hybrid materials. These hybrids act as selective probes with controlled labelling of the cell nucleus or cytoplasm depending on the QCD loading.
- MeSH
- buněčné jádro chemie metabolismus MeSH
- buňky NIH 3T3 MeSH
- cytoplazma chemie metabolismus MeSH
- grafit chemie MeSH
- kationty chemie MeSH
- konfokální mikroskopie MeSH
- kvantové tečky chemie metabolismus MeSH
- myši MeSH
- oxidy chemie MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two-dimensional (2D) materials remain highly interesting for assembling three-dimensional (3D) structures, amongst others, in the form of macroscopic hydrogels. Herein, we present a novel approach for inducing chemical inter-sheet crosslinks via an ethylenediamine mediated reaction between Ti3C2Tx and graphene oxide in order to obtain a reduced graphene oxide-MXene (rGO-MXene) hydrogel. The composite hydrogels are hydrophilic with a stiffness of ~20 kPa. They also possess a unique inter-connected porous architecture, which led to a hitherto unprecedented ability of human cells across three different types, epithelial adenocarcinoma, neuroblastoma and fibroblasts, to form inter-connected three-dimensional networks. The attachments of the cells to the rGO-MXene hydrogels were superior to those of the sole rGO-control gels. This phenomenon stems from the strong affinity of cellular protrusions (neurites, lamellipodia and filopodia) to grow and connect along architectural network paths within the rGO-MXene hydrogel, which could lead to advanced control over macroscopic formations of cellular networks for technologically relevant bioengineering applications, including tissue engineering and personalized diagnostic networks-on-chip. STATEMENT OF SIGNIFICANCE: Conventional hydrogels are made of interconnected polymeric fibres. Unlike conventional case, we used hydrothermal and chemical approach to form interconnected porous hydrogels made of two-dimensional flakes from graphene oxide and metal carbide from a new family of MXenes (Ti3C2Tx). This way, we formed three-dimensional porous hydrogels with unique porous architecture of well-suited chemical surfaces and stiffness. Cells from three different types cultured on these scaffolds formed extended three-dimensional networks - a feature of extended cellular proliferation and pre-requisite for formation of organoids. Considering the studied 2D materials typically constitute materials exhibiting enhanced supercapacitor performances, our study points towards better understanding of design of tissue engineering materials for the future bioengineering fields including personalized diagnostic networks-on-chip, such as artificial heart actuators.
- MeSH
- grafit * MeSH
- hydrogely * MeSH
- lidé MeSH
- titan MeSH
- tkáňové inženýrství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH