• This record comes from PubMed

Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling

. 2015 Sep ; 80 (9) : 1399-1407. [epub] 20150526

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
15-09001S Czech Science Foundation
20/2015 Specific University Research
P108/12/G108 Specific University Research
Ministry of Education, Singapore

The reduction of graphite oxide is one of the most important reactions in the production of graphene in gram quantities. The mechanisms of these widely used reactions are poorly understood. The mechanism of the chemical reduction of two different graphite oxides prepared by the chlorate (Hofmann method) and permanganate methods (Hummers method) has been investigated. Three different reduction agents, lithium tetrahydridoaluminate, sodium tetrahydridoborate, and lithium tetrahydridoborate, as well as their deuterated counterparts, were used for the reduction of graphite oxide. Reduced graphite oxides were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, elemental combustion analysis, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, and simultaneous thermal analysis. The concentration of boron incorporated into graphene was measured by prompt gamma activation analysis. Rutherford back-scattering spectroscopy and elastic recoil detection analysis were used for the determination of the elemental composition, including deuterium concentration, as evidence of CH bond formation.

See more in PubMed

A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183-191.

C. K. Chua, Z. Sofer, P. Šimek, O. Jankovský, K. Klímová, S. Bakardjieva, Š. Hrdličková Kučková, M. Pumera, ACS Nano 2015, 9, 2548-2555.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature 2007, 446, 60-63.

Z. Sofer, P. Simek, O. Jankovsky, D. Sedmidubsky, P. Beran, M. Pumera, Nanoscale 2014, 6, 13082-13089.

M. Pumera, Energy Environ. Sci. 2011, 4, 668-674.

Z. Sofer, O. Jankovský, P. Šimek, K. Klímová, A. Macková, M. Pumera, ACS Nano 2014, 8, 7106-7114.

M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498-3502.

J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Phys. Chem. Chem. Phys. 2011, 13, 15384-15402.

P. Šimek, Z. Sofer, O. Jankovský, D. Sedmidubský, M. Pumera, Adv. Funct. Mater. 2014, 24, 4877.

O. Jankovský, P. Šimek, K. Klimová, D. Sedmidubský, S. Matějková, M. Pumera, Z. Sofer, Nanoscale 2014, 6, 6065-6074.

O. Jankovský, P. Šimek, D. Sedmidubský, S. Matějková, Z. Janoušek, F. Šembera, M. Pumera, Z. Sofer, RSC Adv. 2014, 4, 1378-1387.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science 2009, 323, 610-613.

M. Pumera, C. H. A. Wong, Chem. Soc. Rev. 2013, 42, 5987-5995.

O. Jankovsky, S. Hrdlickova Kuckova, M. Pumera, P. Simek, D. Sedmidubsky, Z. Sofer, unpublished results.

R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, J. Am. Chem. Soc. 2011, 133, 17315-17321.

X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 2010, 114, 832-842.

X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, J. Phys. Chem. C 2011, 115, 11957-11961.

C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 2010, 4, 2429-2437.

Z. Sofer, O. Jankovský, P. Šimek, L. Soferová, D. Sedmidubský, M. Pumera, Nanoscale 2014, 6, 2153-2160.

Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, Carbon 2010, 48, 1686-1689.

D. Voiry, G. Pagona, E. D. Canto, L. Ortolani, V. Morandi, L. Noe, M. Monthioux, N. Tagmatarchis, A. Penicaud, Chem. Commun. 2015, 51, 5017-5019.

A. Pénicaud, C. Drummond, Acc. Chem. Res. 2013, 46, 129-137.

A. Catheline, C. Valles, C. Drummond, L. Ortolani, V. Morandi, M. Marcaccio, M. Iurlo, F. Paolucci, A. Penicaud, Chem. Commun. 2011, 47, 5470-5472.

H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987-1992.

A. Ambrosi, C. K. Chua, A. Bonanni, M. Pumera, Chem. Mater. 2012, 24, 2292-2298.

U. Hofmann, A. Frenzel, Kolloid-Z. 1934, 68, 149-151.

W. Hummers, R. Offeman, J. Am. Chem. Soc. 1958, 80, 1339-1339.

A. Catheline, L. Ortolani, V. Morandi, M. Melle-Franco, C. Drummond, C. Zakri, A. Penicaud, Soft Matter 2012, 8, 7882-7887.

C. Vallés, C. Drummond, H. Saadaoui, C. A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Pénicaud, J. Am. Chem. Soc. 2008, 130, 15802-15804.

A. Pénicaud, F. Dragin, G. Pécastaings, M. He, E. Anglaret, Carbon 2014, 67, 360-367.

O. Jankovský, P. Šimek, K. Klímová, D. Sedmidubský, M. Pumera, Z. Sofer, Carbon 2015, 89, 121-129.

Z. Sofer, L. Wang, K. Klimova, M. Pumera, RSC Adv. 2014, 4, 26673-26676.

C. H. A. Wong, O. Jankovský, Z. Sofer, M. Pumera, Carbon 2014, 77, 508-517.

J. Saarilahti, E. Rauhala, Nucl. Instrum. Methods Phys. Res. 1992, 64, 734-738.

Newest 20 citations...

See more in
Medvik | PubMed

Graphene Oxide and Polymer Humidity Micro-Sensors Prepared by Carbon Beam Writing

. 2023 Feb 21 ; 15 (5) : . [epub] 20230221

Synthesis and Applications of Graphene Oxide

. 2022 Jan 25 ; 15 (3) : . [epub] 20220125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...