Graphene Oxide and Polymer Humidity Micro-Sensors Prepared by Carbon Beam Writing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CANAM OP, CZ.02.1.01/0.0/0.0/16_013/0001812
Ministry of Education Youth and Sports
Project No. 22-10536S
Czech Science Foundation
UJEP-SGS-2021-53-005-2
Jan Evangelista Purkyně University in Ústí nad Labem
PubMed
36904307
PubMed Central
PMC10007639
DOI
10.3390/polym15051066
PII: polym15051066
Knihovny.cz E-resources
- Keywords
- carbon ion micro-beam writing, graphene oxide, humidity sensors, polymers,
- Publication type
- Journal Article MeSH
In this study, novel flexible micro-scale humidity sensors were directly fabricated in graphene oxide (GO) and polyimide (PI) using ion beam writing without any further modifications, and then successfully tested in an atmospheric chamber. Two low fluences (3.75 × 1014 cm-2 and 5.625 × 1014 cm-2) of carbon ions with an energy of 5 MeV were used, and structural changes in the irradiated materials were expected. The shape and structure of prepared micro-sensors were studied using scanning electron microscopy (SEM). The structural and compositional changes in the irradiated area were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Rutherford back-scattering spectroscopy (RBS), energy-dispersive X-ray spectroscopy (EDS), and elastic recoil detection analysis (ERDA) spectroscopy. The sensing performance was tested at a relative humidity (RH) ranging from 5% to 60%, where the electrical conductivity of PI varied by three orders of magnitude, and the electrical capacitance of GO varied in the order of pico-farads. In addition, the PI sensor has proven long-term sensing stability in air. We demonstrated a novel method of ion micro-beam writing to prepare flexible micro-sensors that function over a wide range of humidity and have good sensitivity and great potential for widespread applications.
See more in PubMed
Nie J., Wu Y., Huang Q., Joshi N., Li M., Meng X., Zheng S., Zhang M., Mi B., Lin L. Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Appl. Mater. Interfaces. 2019;11:1699–1705. doi: 10.1021/acsami.8b18538. PubMed DOI
Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013;3:2714. doi: 10.1038/srep02714. PubMed DOI PMC
Zhang J., Liu L., Yang Y., Huang Q., Li D., Zeng D. A review on two-dimensional materials for chemiresistive- and FET-type gas sensors. Phys. Chem. Chem. Phys. 2021;23:15420–15439. doi: 10.1039/D1CP01890F. PubMed DOI
Pi S., Zhang X., Cui H., Chen D., Zhang G., Xiao S., Tang J. Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing. Front. Chem. 2019;7:476. doi: 10.3389/fchem.2019.00476. PubMed DOI PMC
Boudanen J., Stenmassl M., Endres H.E., Drost A., Eisele I., Kutter C., Mülle-Buschbaum P. Polyimide-Based Capacitive Humidity Sensor. Sensors. 2018;18:1516. doi: 10.3390/s18051516. PubMed DOI PMC
Wu Y., Huang Q., Nie J., Liang J., Joshi N., Hayasaka T., Zhao S., Zhang M., Wang X., Lin L. All-Carbon Based Flexible Humidity Sensor. J. Nanosci. Nanotechno. 2019;19:5310–5316. doi: 10.1166/jnn.2019.16821. PubMed DOI
Wang C., Wang Y., Yang Z., Hu N. Review of recent progress on graphene-based composite gas sensors. Ceram. Int. 2021;47:16367–16384. doi: 10.1016/j.ceramint.2021.02.144. DOI
Wang Y., Liu A., Han Y., Li T. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020;69:7–17. doi: 10.1002/pi.5907. DOI
Zhi C., Chi L. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005;3:274–295.
Borini S., White R., Wei D., Astley M., Haque S., Spigone E., Harris N., Kivioja J., Ryhänen T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano. 2013;12:11166–11173. doi: 10.1021/nn404889b. PubMed DOI
Basu S., Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuator. 2012;173:1–21. doi: 10.1016/j.snb.2012.07.092. DOI
Lee H., Lee S., Jung S., Lee J. Nano-grass polyimide-based humidity sensors. Sens. Actuator. 2009;154:2–8. doi: 10.1016/j.snb.2009.11.054. DOI
Packirisamy M., Stiharu I., Li X., Rinaldi G. A polyimide based resistive humidity sensor. Sens. Rev. 2005;25:271–276. doi: 10.1108/02602280510620123. DOI
Kuroiwa T., Hayashi T., Ito A., Matsuguchi M., Sadaoka Y., Sakai Y. A thin film polyimide based capacitive type relative humidity sensor. Sens. Actuators B-Chem. 1993;13:59–91. doi: 10.1016/0925-4005(93)85331-4. DOI
Harith Z., Zain H.A.A., Batumalay M., Harun S.W. A study on relative humidity sensors using PVA and PMMA coating. J. Phys. Conf. Ser. 2019;1371:012027. doi: 10.1088/1742-6596/1371/1/012027. DOI
Liehr S., Breithaupt M., Krebber K. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths. Sensors. 2017;17:738. doi: 10.3390/s17040738. PubMed DOI PMC
Su P.G., Sun Y.L., Lin C.C. Humidity sensor based on PMMA simultaneously doped with two different salts. Sens. Actuators B-Chem. 2006;113:883–886. doi: 10.1016/j.snb.2005.03.052. DOI
Zhang D., Tong J., Xia B., Xue Q. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B-Chem. 2014;203:263–270. doi: 10.1016/j.snb.2014.06.116. DOI
Reddy A.S.G., Narakathu B.B., Atashbar M.Z., Rebros M., Rebrosova E., Joyce M.K. Fully Printed Flexible Humidity Sensor. Procedia Eng. 2011;25:120–123. doi: 10.1016/j.proeng.2011.12.030. DOI
Zhang D., Chang H., Li P., Liu R., Xue Q. Fabrication and characterization of anultrasensitive humidity sensor based on metal oxide/graphene hybrid nano-composite. Sens. Actuators B-Chem. 2016;225:233–240. doi: 10.1016/j.snb.2015.11.024. DOI
Kwon S.N., Jung C.H., Na S.I. Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells. Org. Electron. 2016;34:67–74. doi: 10.1016/j.orgel.2016.04.008. DOI
Jung J.M., Jung C.H., Oh M.S., Hwang I.T., Jung C.H., Shin K., Hwang J., Park S.H., Choi J.H. Rapid, facile, and eco-friendly reduction of graphene oxide by electron beam irradiation in an alcohol–water solution. Mater. Lett. 2014;126:151–153. doi: 10.1016/j.matlet.2014.04.059. DOI
Resta V., Quarta G., Farella I., Maruccio L., Cola A., Calcagnile L. Optical and electrical properties of polycarbonate layers implanted by high energy Cu ions. Nucl. Instrum. Meth. B. 2014;331:168–171. doi: 10.1016/j.nimb.2013.11.038. DOI
Popok V. Ion implantatio of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 2012;30:1–26.
Döbeli M., Jones T.J., Lee A., Livi R.P., Tombrelo T.A. Electrical conductivity of iron-irradiated carbon. Radiat. Eff. Defects Solids. 1991;118:325–339. doi: 10.1080/10420159108220759. DOI
Malinský P., Mackova A., Florianova M., Cutroneo M., Hnatowicz V., Bohacova M., Szokolova K., Bottger R., Sofer Z. The Structural and Compositional Changes of Graphene Oxide Induced by Irradiation With 500 keV Helium and Gallium Ions. Phys. Stat. Sol. B. 2019;256:1800409. doi: 10.1002/pssb.201800409. DOI
Malinský P., Cutroneo M., Mackova A., Hnatowicz V., Florianova M., Bohacova M., Bousa D., Sofer Z. Graphene oxide layers modified by irradiation with 1.2 MeV He+ ions. Surf. Coat. Tech. 2018;342:220–225. doi: 10.1016/j.surfcoat.2018.02.102. DOI
Cutroneo M., Havranek V., Mackova A., Malinsky P., Torrisi L., Lorincik J., Luxa J., Szokolova K., Sofer Z., Stammers J. Localized deoxygenation of graphene oxide foil by ion microbeam writing. Vacuum. 2019;163:10–14. doi: 10.1016/j.vacuum.2019.01.055. DOI
Jankovsky O., Simak P., Luxa J., Sedmidubsky D., Tomandl I., Mackova A., Miksova R., Malinsky P., Pumera M., Sofer Z. Definitive insight into the graphite oxide reduction mechanism by deuterium labeling. ChemPlusChem. 2015;80:1399–1407. doi: 10.1002/cplu.201500168. PubMed DOI
[(accessed on 22 September 2022)]. Available online: http://www.goodfellow.com/
Martienssen W., Warlimont H. Springer Handbook of Condensed Matter and Materials Data. Springer; Berlin/Heidelberg, Germany: 2005.
Mayer M. SIMNRA User’s Guide, Report IPP 9/113. Max-Planck-Institut fur Plasmaphysik; Garching, Germany: 1997.
Malinsky P., Romanenko A., Havranek V., Stammers J.H., Hnatowicz V., Cutroneo M., Novak J., Slepicka P., Svorcik V., Szokolova K., et al. Microcapacitors on graphene oxide and synthetic polymers prepared by microbeam lithography. Appl. Surf. Sci. 2020;528:146802. doi: 10.1016/j.apsusc.2020.146802. DOI
Thomaz R.S., Papaléo R.M. Ion Beam Modification of Poly (methyl methacrylate) In: Kumar V., Chaudhary B., Sharma V., Verma K., editors. Radiation Effects in Polymeric Materials. Springer; Cham, Switzerland: 2019. pp. 113–139. Springer Series on Polymer and Composite Materials.
Liu Y., Chen Q., Du X., Li X., Li P. Surface modification of polyethylene terephthalate films by direct fluorination. AIP Adv. 2018;8:125333. doi: 10.1063/1.5066246. DOI
Jamalzadeh M., Sobkowicz M.J. Review of the effects of irradiation treatments on poly(ethylene terephthalate) Polym. Deg. Stab. 2022;206:110191. doi: 10.1016/j.polymdegradstab.2022.110191. DOI
Hwang I.T., Kuk I.S., Jung C.H., Choi J.H., Nho Y.C., Lee Y.M. Efficient Immobilization and Patterning of Biomolecules on Poly(ethylene terephthalate) Films Functionalized by Ion Irradiation for Biosensor Applications. ACS Appl. Mater. Interfaces. 2011;3:2235–2239. doi: 10.1021/am200630p. PubMed DOI
Ahmed Q.S., Bashir S., Jalil S.A., Shabbir M.K., Akram M., Khalid A., Yaseen N., Arshad A. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions. Nucl. Instrum. Meth. B. 2016;378:1–7. doi: 10.1016/j.nimb.2016.04.035. DOI
Popok V.N., Zarko I.I., Khaibullin R.I., Stepanov A.L., Hnatowicz V., Mackova A., Prasalovich S.V. Radiation induced change of polyimide properties under high fluence and high ion current density implantation. Appl. Phys. A. 2004;78:1067–1072. doi: 10.1007/s00339-003-2166-9. DOI
Kochumalayil J.J., Meiser A., Soldera F., Possart W. Focused ion beam irradiation—morphological and chemical evolution in PMMA. Surf. Interface Anal. 2009;41:412–420. doi: 10.1002/sia.3042. DOI
Puttaraksa N., Norarat R., Laitinen M., Sajavaara T., Sinkgkarat S., Whitlow H.J. Litography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions. Nucl. Instrum. Meth. B. 2012;272:162–164. doi: 10.1016/j.nimb.2011.01.056. DOI
Romanenko O., Havranek V., Malinsky P., Slepicka P., Stammers J., Svorcik V., Mackova A., Fajstavr D. Effect of irradiation conditions by swift heavy ions on the microstructure and composition of PMMA. Nucl. Instrum. Meth. B. 2019;461:175–180. doi: 10.1016/j.nimb.2019.09.043. DOI
Constantini J.M., Couvreur F., Salvetat J.P., Bouffard S. Micro-Raman study of the carbonization of polyimide induced by swift heavy ion irradiations. Nucl. Instrum. Meth. B. 2002;194:132–140. doi: 10.1016/S0168-583X(02)00669-9. DOI
Viana M.M., Lima M.C.F.S., Forsythe J.C., Gangoli V.S., Cho M., Cheng Y., Silva G.G., Wong M.S., Caliman V. Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method. J. Braz. Chem. Soc. 2015;26:978–984. doi: 10.5935/0103-5053.20150061. DOI
Kavetskyy T., Nowak J., Borc J., Rusnak J., Šauša O., Stepanov A.L. Carbonization in boron-ion implanted polymethylmethacrylate as revealed from Raman spectroscopy and electrical measurements. Spectrosc. Lett. 2015;49:5–10. doi: 10.1080/00387010.2015.1044113. DOI
Lippert T.H., Zimmermann F., Wokaun A. Surface Analysis of Excimer-Laser-Treated Polyethylene-Terephthalate by Surface-Enhanced Raman Scattering and X-Ray Photoelectron Spectroscopy. Appl. Spectrosc. 1993;47:1931–1942. doi: 10.1366/0003702934065911. DOI
Hareesh A.K., Joshi R.P., Shateesh B., Kandasami A., Kanjilal D., Late D., Dahiwale S., Bhoraskar V., Haram S., Dhole S.D. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2 O2 sensor. J. Phys. D Appl. Phys. 2015;48:365105. doi: 10.1088/0022-3727/48/36/365105. DOI
Mathew S., Chan T.K., Gopinadhan K., Barman A.R., Breese M.B.H., Dhar S., Shen R.S., Venkatesan T., Thong J.L.T. Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study. J. Appl. Phys. 2011;110:084309. doi: 10.1063/1.3647781. DOI
Ambrosi A., Bonanni A., Sofer Z., Cross J.S., Pumera M. Electrochemistry at chemically modified graphene. Chemistry. 2011;17:10763–10770. doi: 10.1002/chem.201101117. PubMed DOI
Babtista D.L., Zawislak F.C. Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C: H films. Diam. Relat. Mater. 2004;13:1791–1801. doi: 10.1016/j.diamond.2004.04.006. DOI
Arif S., Rafique M.S., Saleemi F., Sagheer R., Naab F., Toader O., Mahmood A., Rashid R., Mahmood M. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA. Nucl. Instrum. Meth. B. 2015;358:236–244. doi: 10.1016/j.nimb.2015.06.041. DOI
Pei S., Cheng H.M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI
Malinsky P., Mackova A., Miksova R., Kovacikova H., Cutroneo M., Luxa J., Bousa D., Strochova B., Sofer Z. Graphene oxide layers modified by light energetic ions. Phys. Chem. Chem. Phys. 2017;19:10282–10291. doi: 10.1039/C6CP08937B. PubMed DOI
Malinsky P., Cutroneo M., Mackova A., Hnatowicz V., Szökölová K., Bohačová M., Luxa J., Sofer Z. Graphene oxide layers modified by irradiation with 1.0 MeV Au+ ions. Surf. Interface Anal. 2018;50:1110–1115. doi: 10.1002/sia.6475. DOI
Yuge R., Zhang M., Tomonari M., Yoshitake T., Iijima S., Yudasaka M. Site Identification of Carboxyl Groups on Graphene Edges with Pt Derivatives. ACS Nano. 2008;2:1865–1870. doi: 10.1021/nn800352y. PubMed DOI
Zeng D.W., Yung K.C., Xie C.S. XPS investigation of the chemical characteristics of Kapton films ablated by a pulsed TEA CO2 laser. Surf. Coat. Tech. 2002;153:210–216. doi: 10.1016/S0257-8972(01)01696-6. DOI
Khomiakova N., Hanuš J., Kuzminova A., Kylián O. Investigation of Wettability, Drying and Water Condensation on Polyimide (Kapton) Films Treated by Atmospheric Pressure Air Dielectric Barrier Discharge. Coatings. 2020;10:619. doi: 10.3390/coatings10070619. DOI
Pletincx S., Marcoen K., Trotochaud L., Fockaer L.L., Mol J.M.C., Head A.R., Karslioglu O., Bluhm H., Terryn H., Haufman T. Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ. Nature. 2017;7:13341. doi: 10.1038/s41598-017-13549-z. PubMed DOI PMC
Abdel-Fattah E. Surface Activation of Poly(Methyl Methacrylate) with Atmospheric Pressure Ar+H2O Plasma. Coatings. 2019;9:228. doi: 10.3390/coatings9040228. DOI
Song S., Wan C., Zhang Y. Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate) RSC Adv. 2015;97:79947–79955. doi: 10.1039/C5RA14967C. DOI
Ektessabi A.M., Hakamata S. XPS study of ion beam modified polyimide films. Thin. Solid. Films. 2000;377–378:621–625. doi: 10.1016/S0040-6090(00)01444-9. DOI
Pistillo B.R., Menguelti K., Arl D., Leturcq R., Lenoble D. PRAP-CVD: A Novel Technique to Deposit Intrinsically Conductive Polymers. In: Cankaya N., editor. Polymerization. Intechopen; London, UK: 2018.
Gonzales E., Barankin M.D., Guschl P.C., Hicks R.F. Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate. Langmuir. 2008;24:12636–12643. doi: 10.1021/la802296c. PubMed DOI
Wu Z., He J., Yang H., Yang S. Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties. Polymers. 2022;14:1269. doi: 10.3390/polym14061269. PubMed DOI PMC
Cheng B.H., Tian B.X., Xie C.C., Xiao Y.H., Lei S.J. Highly sensitive humidity sensor based on amorphous Al2 O3 nanotubes. J. Mater. Chem. 2011;21:1907–1912. doi: 10.1039/C0JM02753G. DOI
Yoo K.P., Lim L.T., Mim N.K., Lee M.J., Lee C.J., Park C.W. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators. 2010;145:120–125. doi: 10.1016/j.snb.2009.11.041. DOI