• This record comes from PubMed

Graphene Oxide and Polymer Humidity Micro-Sensors Prepared by Carbon Beam Writing

. 2023 Feb 21 ; 15 (5) : . [epub] 20230221

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CANAM OP, CZ.02.1.01/0.0/0.0/16_013/0001812 Ministry of Education Youth and Sports
Project No. 22-10536S Czech Science Foundation
UJEP-SGS-2021-53-005-2 Jan Evangelista Purkyně University in Ústí nad Labem

In this study, novel flexible micro-scale humidity sensors were directly fabricated in graphene oxide (GO) and polyimide (PI) using ion beam writing without any further modifications, and then successfully tested in an atmospheric chamber. Two low fluences (3.75 × 1014 cm-2 and 5.625 × 1014 cm-2) of carbon ions with an energy of 5 MeV were used, and structural changes in the irradiated materials were expected. The shape and structure of prepared micro-sensors were studied using scanning electron microscopy (SEM). The structural and compositional changes in the irradiated area were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Rutherford back-scattering spectroscopy (RBS), energy-dispersive X-ray spectroscopy (EDS), and elastic recoil detection analysis (ERDA) spectroscopy. The sensing performance was tested at a relative humidity (RH) ranging from 5% to 60%, where the electrical conductivity of PI varied by three orders of magnitude, and the electrical capacitance of GO varied in the order of pico-farads. In addition, the PI sensor has proven long-term sensing stability in air. We demonstrated a novel method of ion micro-beam writing to prepare flexible micro-sensors that function over a wide range of humidity and have good sensitivity and great potential for widespread applications.

See more in PubMed

Nie J., Wu Y., Huang Q., Joshi N., Li M., Meng X., Zheng S., Zhang M., Mi B., Lin L. Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Appl. Mater. Interfaces. 2019;11:1699–1705. doi: 10.1021/acsami.8b18538. PubMed DOI

Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013;3:2714. doi: 10.1038/srep02714. PubMed DOI PMC

Zhang J., Liu L., Yang Y., Huang Q., Li D., Zeng D. A review on two-dimensional materials for chemiresistive- and FET-type gas sensors. Phys. Chem. Chem. Phys. 2021;23:15420–15439. doi: 10.1039/D1CP01890F. PubMed DOI

Pi S., Zhang X., Cui H., Chen D., Zhang G., Xiao S., Tang J. Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing. Front. Chem. 2019;7:476. doi: 10.3389/fchem.2019.00476. PubMed DOI PMC

Boudanen J., Stenmassl M., Endres H.E., Drost A., Eisele I., Kutter C., Mülle-Buschbaum P. Polyimide-Based Capacitive Humidity Sensor. Sensors. 2018;18:1516. doi: 10.3390/s18051516. PubMed DOI PMC

Wu Y., Huang Q., Nie J., Liang J., Joshi N., Hayasaka T., Zhao S., Zhang M., Wang X., Lin L. All-Carbon Based Flexible Humidity Sensor. J. Nanosci. Nanotechno. 2019;19:5310–5316. doi: 10.1166/jnn.2019.16821. PubMed DOI

Wang C., Wang Y., Yang Z., Hu N. Review of recent progress on graphene-based composite gas sensors. Ceram. Int. 2021;47:16367–16384. doi: 10.1016/j.ceramint.2021.02.144. DOI

Wang Y., Liu A., Han Y., Li T. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020;69:7–17. doi: 10.1002/pi.5907. DOI

Zhi C., Chi L. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005;3:274–295.

Borini S., White R., Wei D., Astley M., Haque S., Spigone E., Harris N., Kivioja J., Ryhänen T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano. 2013;12:11166–11173. doi: 10.1021/nn404889b. PubMed DOI

Basu S., Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuator. 2012;173:1–21. doi: 10.1016/j.snb.2012.07.092. DOI

Lee H., Lee S., Jung S., Lee J. Nano-grass polyimide-based humidity sensors. Sens. Actuator. 2009;154:2–8. doi: 10.1016/j.snb.2009.11.054. DOI

Packirisamy M., Stiharu I., Li X., Rinaldi G. A polyimide based resistive humidity sensor. Sens. Rev. 2005;25:271–276. doi: 10.1108/02602280510620123. DOI

Kuroiwa T., Hayashi T., Ito A., Matsuguchi M., Sadaoka Y., Sakai Y. A thin film polyimide based capacitive type relative humidity sensor. Sens. Actuators B-Chem. 1993;13:59–91. doi: 10.1016/0925-4005(93)85331-4. DOI

Harith Z., Zain H.A.A., Batumalay M., Harun S.W. A study on relative humidity sensors using PVA and PMMA coating. J. Phys. Conf. Ser. 2019;1371:012027. doi: 10.1088/1742-6596/1371/1/012027. DOI

Liehr S., Breithaupt M., Krebber K. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths. Sensors. 2017;17:738. doi: 10.3390/s17040738. PubMed DOI PMC

Su P.G., Sun Y.L., Lin C.C. Humidity sensor based on PMMA simultaneously doped with two different salts. Sens. Actuators B-Chem. 2006;113:883–886. doi: 10.1016/j.snb.2005.03.052. DOI

Zhang D., Tong J., Xia B., Xue Q. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B-Chem. 2014;203:263–270. doi: 10.1016/j.snb.2014.06.116. DOI

Reddy A.S.G., Narakathu B.B., Atashbar M.Z., Rebros M., Rebrosova E., Joyce M.K. Fully Printed Flexible Humidity Sensor. Procedia Eng. 2011;25:120–123. doi: 10.1016/j.proeng.2011.12.030. DOI

Zhang D., Chang H., Li P., Liu R., Xue Q. Fabrication and characterization of anultrasensitive humidity sensor based on metal oxide/graphene hybrid nano-composite. Sens. Actuators B-Chem. 2016;225:233–240. doi: 10.1016/j.snb.2015.11.024. DOI

Kwon S.N., Jung C.H., Na S.I. Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells. Org. Electron. 2016;34:67–74. doi: 10.1016/j.orgel.2016.04.008. DOI

Jung J.M., Jung C.H., Oh M.S., Hwang I.T., Jung C.H., Shin K., Hwang J., Park S.H., Choi J.H. Rapid, facile, and eco-friendly reduction of graphene oxide by electron beam irradiation in an alcohol–water solution. Mater. Lett. 2014;126:151–153. doi: 10.1016/j.matlet.2014.04.059. DOI

Resta V., Quarta G., Farella I., Maruccio L., Cola A., Calcagnile L. Optical and electrical properties of polycarbonate layers implanted by high energy Cu ions. Nucl. Instrum. Meth. B. 2014;331:168–171. doi: 10.1016/j.nimb.2013.11.038. DOI

Popok V. Ion implantatio of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 2012;30:1–26.

Döbeli M., Jones T.J., Lee A., Livi R.P., Tombrelo T.A. Electrical conductivity of iron-irradiated carbon. Radiat. Eff. Defects Solids. 1991;118:325–339. doi: 10.1080/10420159108220759. DOI

Malinský P., Mackova A., Florianova M., Cutroneo M., Hnatowicz V., Bohacova M., Szokolova K., Bottger R., Sofer Z. The Structural and Compositional Changes of Graphene Oxide Induced by Irradiation With 500 keV Helium and Gallium Ions. Phys. Stat. Sol. B. 2019;256:1800409. doi: 10.1002/pssb.201800409. DOI

Malinský P., Cutroneo M., Mackova A., Hnatowicz V., Florianova M., Bohacova M., Bousa D., Sofer Z. Graphene oxide layers modified by irradiation with 1.2 MeV He+ ions. Surf. Coat. Tech. 2018;342:220–225. doi: 10.1016/j.surfcoat.2018.02.102. DOI

Cutroneo M., Havranek V., Mackova A., Malinsky P., Torrisi L., Lorincik J., Luxa J., Szokolova K., Sofer Z., Stammers J. Localized deoxygenation of graphene oxide foil by ion microbeam writing. Vacuum. 2019;163:10–14. doi: 10.1016/j.vacuum.2019.01.055. DOI

Jankovsky O., Simak P., Luxa J., Sedmidubsky D., Tomandl I., Mackova A., Miksova R., Malinsky P., Pumera M., Sofer Z. Definitive insight into the graphite oxide reduction mechanism by deuterium labeling. ChemPlusChem. 2015;80:1399–1407. doi: 10.1002/cplu.201500168. PubMed DOI

[(accessed on 22 September 2022)]. Available online: http://www.goodfellow.com/

Martienssen W., Warlimont H. Springer Handbook of Condensed Matter and Materials Data. Springer; Berlin/Heidelberg, Germany: 2005.

Mayer M. SIMNRA User’s Guide, Report IPP 9/113. Max-Planck-Institut fur Plasmaphysik; Garching, Germany: 1997.

Malinsky P., Romanenko A., Havranek V., Stammers J.H., Hnatowicz V., Cutroneo M., Novak J., Slepicka P., Svorcik V., Szokolova K., et al. Microcapacitors on graphene oxide and synthetic polymers prepared by microbeam lithography. Appl. Surf. Sci. 2020;528:146802. doi: 10.1016/j.apsusc.2020.146802. DOI

Thomaz R.S., Papaléo R.M. Ion Beam Modification of Poly (methyl methacrylate) In: Kumar V., Chaudhary B., Sharma V., Verma K., editors. Radiation Effects in Polymeric Materials. Springer; Cham, Switzerland: 2019. pp. 113–139. Springer Series on Polymer and Composite Materials.

Liu Y., Chen Q., Du X., Li X., Li P. Surface modification of polyethylene terephthalate films by direct fluorination. AIP Adv. 2018;8:125333. doi: 10.1063/1.5066246. DOI

Jamalzadeh M., Sobkowicz M.J. Review of the effects of irradiation treatments on poly(ethylene terephthalate) Polym. Deg. Stab. 2022;206:110191. doi: 10.1016/j.polymdegradstab.2022.110191. DOI

Hwang I.T., Kuk I.S., Jung C.H., Choi J.H., Nho Y.C., Lee Y.M. Efficient Immobilization and Patterning of Biomolecules on Poly(ethylene terephthalate) Films Functionalized by Ion Irradiation for Biosensor Applications. ACS Appl. Mater. Interfaces. 2011;3:2235–2239. doi: 10.1021/am200630p. PubMed DOI

Ahmed Q.S., Bashir S., Jalil S.A., Shabbir M.K., Akram M., Khalid A., Yaseen N., Arshad A. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions. Nucl. Instrum. Meth. B. 2016;378:1–7. doi: 10.1016/j.nimb.2016.04.035. DOI

Popok V.N., Zarko I.I., Khaibullin R.I., Stepanov A.L., Hnatowicz V., Mackova A., Prasalovich S.V. Radiation induced change of polyimide properties under high fluence and high ion current density implantation. Appl. Phys. A. 2004;78:1067–1072. doi: 10.1007/s00339-003-2166-9. DOI

Kochumalayil J.J., Meiser A., Soldera F., Possart W. Focused ion beam irradiation—morphological and chemical evolution in PMMA. Surf. Interface Anal. 2009;41:412–420. doi: 10.1002/sia.3042. DOI

Puttaraksa N., Norarat R., Laitinen M., Sajavaara T., Sinkgkarat S., Whitlow H.J. Litography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions. Nucl. Instrum. Meth. B. 2012;272:162–164. doi: 10.1016/j.nimb.2011.01.056. DOI

Romanenko O., Havranek V., Malinsky P., Slepicka P., Stammers J., Svorcik V., Mackova A., Fajstavr D. Effect of irradiation conditions by swift heavy ions on the microstructure and composition of PMMA. Nucl. Instrum. Meth. B. 2019;461:175–180. doi: 10.1016/j.nimb.2019.09.043. DOI

Constantini J.M., Couvreur F., Salvetat J.P., Bouffard S. Micro-Raman study of the carbonization of polyimide induced by swift heavy ion irradiations. Nucl. Instrum. Meth. B. 2002;194:132–140. doi: 10.1016/S0168-583X(02)00669-9. DOI

Viana M.M., Lima M.C.F.S., Forsythe J.C., Gangoli V.S., Cho M., Cheng Y., Silva G.G., Wong M.S., Caliman V. Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method. J. Braz. Chem. Soc. 2015;26:978–984. doi: 10.5935/0103-5053.20150061. DOI

Kavetskyy T., Nowak J., Borc J., Rusnak J., Šauša O., Stepanov A.L. Carbonization in boron-ion implanted polymethylmethacrylate as revealed from Raman spectroscopy and electrical measurements. Spectrosc. Lett. 2015;49:5–10. doi: 10.1080/00387010.2015.1044113. DOI

Lippert T.H., Zimmermann F., Wokaun A. Surface Analysis of Excimer-Laser-Treated Polyethylene-Terephthalate by Surface-Enhanced Raman Scattering and X-Ray Photoelectron Spectroscopy. Appl. Spectrosc. 1993;47:1931–1942. doi: 10.1366/0003702934065911. DOI

Hareesh A.K., Joshi R.P., Shateesh B., Kandasami A., Kanjilal D., Late D., Dahiwale S., Bhoraskar V., Haram S., Dhole S.D. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2 O2 sensor. J. Phys. D Appl. Phys. 2015;48:365105. doi: 10.1088/0022-3727/48/36/365105. DOI

Mathew S., Chan T.K., Gopinadhan K., Barman A.R., Breese M.B.H., Dhar S., Shen R.S., Venkatesan T., Thong J.L.T. Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study. J. Appl. Phys. 2011;110:084309. doi: 10.1063/1.3647781. DOI

Ambrosi A., Bonanni A., Sofer Z., Cross J.S., Pumera M. Electrochemistry at chemically modified graphene. Chemistry. 2011;17:10763–10770. doi: 10.1002/chem.201101117. PubMed DOI

Babtista D.L., Zawislak F.C. Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C: H films. Diam. Relat. Mater. 2004;13:1791–1801. doi: 10.1016/j.diamond.2004.04.006. DOI

Arif S., Rafique M.S., Saleemi F., Sagheer R., Naab F., Toader O., Mahmood A., Rashid R., Mahmood M. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA. Nucl. Instrum. Meth. B. 2015;358:236–244. doi: 10.1016/j.nimb.2015.06.041. DOI

Pei S., Cheng H.M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010. DOI

Malinsky P., Mackova A., Miksova R., Kovacikova H., Cutroneo M., Luxa J., Bousa D., Strochova B., Sofer Z. Graphene oxide layers modified by light energetic ions. Phys. Chem. Chem. Phys. 2017;19:10282–10291. doi: 10.1039/C6CP08937B. PubMed DOI

Malinsky P., Cutroneo M., Mackova A., Hnatowicz V., Szökölová K., Bohačová M., Luxa J., Sofer Z. Graphene oxide layers modified by irradiation with 1.0 MeV Au+ ions. Surf. Interface Anal. 2018;50:1110–1115. doi: 10.1002/sia.6475. DOI

Yuge R., Zhang M., Tomonari M., Yoshitake T., Iijima S., Yudasaka M. Site Identification of Carboxyl Groups on Graphene Edges with Pt Derivatives. ACS Nano. 2008;2:1865–1870. doi: 10.1021/nn800352y. PubMed DOI

Zeng D.W., Yung K.C., Xie C.S. XPS investigation of the chemical characteristics of Kapton films ablated by a pulsed TEA CO2 laser. Surf. Coat. Tech. 2002;153:210–216. doi: 10.1016/S0257-8972(01)01696-6. DOI

Khomiakova N., Hanuš J., Kuzminova A., Kylián O. Investigation of Wettability, Drying and Water Condensation on Polyimide (Kapton) Films Treated by Atmospheric Pressure Air Dielectric Barrier Discharge. Coatings. 2020;10:619. doi: 10.3390/coatings10070619. DOI

Pletincx S., Marcoen K., Trotochaud L., Fockaer L.L., Mol J.M.C., Head A.R., Karslioglu O., Bluhm H., Terryn H., Haufman T. Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ. Nature. 2017;7:13341. doi: 10.1038/s41598-017-13549-z. PubMed DOI PMC

Abdel-Fattah E. Surface Activation of Poly(Methyl Methacrylate) with Atmospheric Pressure Ar+H2O Plasma. Coatings. 2019;9:228. doi: 10.3390/coatings9040228. DOI

Song S., Wan C., Zhang Y. Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate) RSC Adv. 2015;97:79947–79955. doi: 10.1039/C5RA14967C. DOI

Ektessabi A.M., Hakamata S. XPS study of ion beam modified polyimide films. Thin. Solid. Films. 2000;377–378:621–625. doi: 10.1016/S0040-6090(00)01444-9. DOI

Pistillo B.R., Menguelti K., Arl D., Leturcq R., Lenoble D. PRAP-CVD: A Novel Technique to Deposit Intrinsically Conductive Polymers. In: Cankaya N., editor. Polymerization. Intechopen; London, UK: 2018.

Gonzales E., Barankin M.D., Guschl P.C., Hicks R.F. Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate. Langmuir. 2008;24:12636–12643. doi: 10.1021/la802296c. PubMed DOI

Wu Z., He J., Yang H., Yang S. Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties. Polymers. 2022;14:1269. doi: 10.3390/polym14061269. PubMed DOI PMC

Cheng B.H., Tian B.X., Xie C.C., Xiao Y.H., Lei S.J. Highly sensitive humidity sensor based on amorphous Al2 O3 nanotubes. J. Mater. Chem. 2011;21:1907–1912. doi: 10.1039/C0JM02753G. DOI

Yoo K.P., Lim L.T., Mim N.K., Lee M.J., Lee C.J., Park C.W. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators. 2010;145:120–125. doi: 10.1016/j.snb.2009.11.041. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...