Toxicity of Carbon Nanomaterials-Towards Reliable Viability Assessment via New Approach in Flow Cytometry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34299367
PubMed Central
PMC8305450
DOI
10.3390/ijms22147750
PII: ijms22147750
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanomaterials, cell viability, cytotoxicity, flow cytometry, interference,
- MeSH
- fluorescence MeSH
- fluorescenční barviva toxicita MeSH
- grafit toxicita MeSH
- kultivované buňky MeSH
- kvantové tečky toxicita MeSH
- lidé MeSH
- nanostruktury toxicita MeSH
- průtoková cytometrie metody MeSH
- sloučeniny dusíku toxicita MeSH
- uhlík toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva MeSH
- grafit MeSH
- graphitic carbon nitride MeSH Prohlížeč
- sloučeniny dusíku MeSH
- uhlík MeSH
The scope of application of carbon nanomaterials in biomedical, environmental and industrial fields is recently substantially increasing. Since in vitro toxicity testing is the first essential step for any commercial usage, it is crucial to have a reliable method to analyze the potentially harmful effects of carbon nanomaterials. Even though researchers already reported the interference of carbon nanomaterials with common toxicity assays, there is still, unfortunately, a large number of studies that neglect this fact. In this study, we investigated interference of four bio-promising carbon nanomaterials (graphene acid (GA), cyanographene (GCN), graphitic carbon nitride (g-C3N4) and carbon dots (QCDs)) in commonly used LIVE/DEAD assay. When a standard procedure was applied, materials caused various types of interference. While positively charged g-C3N4 and QCDs induced false results through the creation of free agglomerates and intrinsic fluorescence properties, negatively charged GA and GCN led to false signals due to the complex quenching effect of the fluorescent dye of a LIVE/DEAD kit. Thus, we developed a new approach using a specific gating strategy based on additional controls that successfully overcame all types of interference and lead to reliable results in LIVE/DEAD assay. We suggest that the newly developed procedure should be a mandatory tool for all in vitro flow cytometry assays of any class of carbon nanomaterials.
Zobrazit více v PubMed
Li Z., Wang L., Li Y., Feng Y., Feng W. Carbon-based functional nanomaterials: Preparation, properties and applications. Compos. Sci. Technol. 2019;179:10–40. doi: 10.1016/j.compscitech.2019.04.028. DOI
Jaleel J.A., Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J. Control. Release. 2018;269:302–321. doi: 10.1016/j.jconrel.2017.11.027. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015;73:44–126. doi: 10.1016/j.pmatsci.2015.02.002. DOI
Georgakilas V., Tiwari J.N., Kemp K., Perrnan J.A., Bourlinos A.B., Kim K.S., Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016;116:5464–5519. doi: 10.1021/acs.chemrev.5b00620. PubMed DOI
Zhu C., Du D., Lin Y. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater. 2015;2:032004. doi: 10.1088/2053-1583/2/3/032004. DOI
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D.D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., et al. Otyepka, Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Liao G., He F., Li Q., Zhong L., Zhao R., Che H., Gao H., Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020;112:100666. doi: 10.1016/j.pmatsci.2020.100666. DOI
Hola K., Zhang Y., Wang Y., Giannelis E.P., Zboril R., Rogach A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9:590–603. doi: 10.1016/j.nantod.2014.09.004. DOI
Wang A.-J., Li H., Huang H., Qian Z.-S., Feng J.-J. Fluorescent graphene-like carbon nitrides: Synthesis, properties and applications. J. Mater. Chem. C. 2016;4:8146–8160. doi: 10.1039/C6TC02330D. DOI
Devi P., Saini S., Kim K.-H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019;141:111158. doi: 10.1016/j.bios.2019.02.059. PubMed DOI
Malina T., Poláková K., Skopalík J., Milotová V., Hola K., Havrdová M., Tománková K.B., Čmiel V., Sefc L., Zbořil R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI
Drasler B., Sayre P., Steinhäuser K.G., Fink A., Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact. 2017;8:99–116. doi: 10.1016/j.impact.2017.08.002. DOI
Krewski D., Acosta D., Andersen M., Anderson H., Bailar J.C., Boekelheide K., Brent R., Charnley G., Cheung V.G., Green S., et al. Toxicity Testing in the 21st Century: A Vision and a Strategy. J. Toxicol. Environ. Health Part B. 2010;13:51–138. doi: 10.1080/10937404.2010.483176. PubMed DOI PMC
Andersen M.E., Krewski D. Toxicity Testing in the 21st Century: Bringing the Vision to Life. Toxicol. Sci. 2008;107:324–330. doi: 10.1093/toxsci/kfn255. PubMed DOI
Romeo D., Salieri B., Hischier R., Nowack B., Wick P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ. Int. 2020;137:105505. doi: 10.1016/j.envint.2020.105505. PubMed DOI
Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012;86:1123–1136. doi: 10.1007/s00204-012-0837-z. PubMed DOI
Ong K.J., MacCormack T., Clark R.J., Ede J.D., Ortega V.A., Felix L., Dang M.K.M., Ma G., Fenniri H., Veinot J.G.C., et al. Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing. PLoS ONE. 2014;9:e90650. doi: 10.1371/journal.pone.0090650. PubMed DOI PMC
Guadagnini R., Kenzaoui B.H., Walker L., Pojana G., Magdolenova Z., Bilanicova D., Saunders M., Juillerat-Jeanneret L., Marcomini A., Huk A. Boland, Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9:13–24. doi: 10.3109/17435390.2013.829590. PubMed DOI
Andraos C., Yu I.J., Gulumian M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int. J. Toxicol. 2020;39:397–421. doi: 10.1177/1091581820938335. PubMed DOI
Labouta H., Asgarian N., Rinker K., Cramb D.T. Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature. ACS Nano. 2019;13:1583–1594. doi: 10.1021/acsnano.8b07562. PubMed DOI
Wright P.C., Qin H., Choi M.M., Chiu N.H., Jia Z. Carbon nanodots interference with lactate dehydrogenase assay in human monocyte THP-1 cells. SpringerPlus. 2014;3:615. doi: 10.1186/2193-1801-3-615. PubMed DOI PMC
Casey A., Herzog E., Davoren M., Lyng F., Byrne H., Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon. 2007;45:1425–1432. doi: 10.1016/j.carbon.2007.03.033. DOI
Monteiro-Riviere N., Inman A.O. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44:1070–1078. doi: 10.1016/j.carbon.2005.11.004. DOI
Wörle-Knirsch J.M., Pulskamp A.K., Krug H.F., Wörle-Knirsch J.M., Pulskamp A.K., Krug H.F. Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays. Nano Lett. 2006;6:1261–1268. doi: 10.1021/nl060177c. PubMed DOI
Holder A., Goth-Goldstein R., Lucas D., Koshland C.P. Particle-Induced Artifacts in the MTT and LDH Viability Assays. Chem. Res. Toxicol. 2012;25:1885–1892. doi: 10.1021/tx3001708. PubMed DOI PMC
Belyanskaya L., Manser P., Spohn P., Bruinink A., Wick P. The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. Carbon. 2007;45:2643–2648. doi: 10.1016/j.carbon.2007.08.010. DOI
Tuchin V.V., Tárnok A., Zharov V.P. In vivo flow cytometry: A horizon of opportunities. Cytom. Part A. 2011;79:737–745. doi: 10.1002/cyto.a.21143. PubMed DOI PMC
Bakke A.C. The Principles of Flow Cytometry. Lab. Med. 2001;32:207–211. doi: 10.1309/2H43-5EC2-K22U-YC6T. DOI
Bohmer N., Rippl A., May S., Walter A., Heo M.B., Kwak M., Roesslein M., Song N.W., Wick P., Hirsch C. Interference of engineered nanomaterials in flow cytometry: A case study. Colloids Surf. B: Biointerfaces. 2018;172:635–645. doi: 10.1016/j.colsurfb.2018.09.021. PubMed DOI
Svoboda L., Praus P., de Lima M.J.B.P., Sampaio M.J., Matýsek D., Ritz M., Dvorský R., Faria J.L., Silva C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018;100:322–332. doi: 10.1016/j.materresbull.2017.12.049. DOI
Svoboda L., Škuta R., Matějka V., Dvorský R., Matýsek D., Henych J., Mančík P., Praus P. Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Mater. Chem. Phys. 2019;228:228–236. doi: 10.1016/j.matchemphys.2019.02.077. DOI
Monopoli M.P., Åberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7:779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Patil S., Sandberg A., Heckert E., Self W., Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28:4600–4607. doi: 10.1016/j.biomaterials.2007.07.029. PubMed DOI PMC
Walkey C.D., Chan W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012;41:2780–2799. doi: 10.1039/C1CS15233E. PubMed DOI
Doorley G.W., Payne C.K. Cellular binding of nanoparticles in the presence of serum proteins. Chem. Commun. 2011;47:466–468. doi: 10.1039/C0CC02618B. PubMed DOI
Glancy D., Zhang Y., Wu J.L., Ouyang B., Ohta S., Chan W.C. Characterizing the protein corona of sub-10 nm nanoparticles. J. Control. Release. 2019;304:102–110. doi: 10.1016/j.jconrel.2019.04.023. PubMed DOI
Longin C., Petitgonnet C., Guilloux-Benatier M., Rousseaux S., Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiol. 2017;62:221–231. doi: 10.1016/j.fm.2016.10.023. PubMed DOI