Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard

. 2019 Mar 19 ; 116 (12) : 5633-5642. [epub] 20190228

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30819892

Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.

CIBIO InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto 4485 661 Vairão Portugal

CIBIO InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto 4485 661 Vairão Portugal;

Departamento de Biologia Faculdade de Ciências Universidade do Porto 4169 007 Porto Portugal

Department of Analytical Chemistry Faculty of Science Charles University 128 43 Prague 2 Czech Republic

Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences 750 07 Uppsala Sweden

Department of Biology Lund University 223 62 Lund Sweden

Department of Earth and Environmental Sciences University of Pavia 27100 Pavia Italy

Department of Food Science Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague 165 21 Prague 6 Czech Republic

Department of Health Life and Environmental Sciences University of L'Aquila 67100 L'Aquila Italy

Department of Philosophy and History of Science Faculty of Science Charles University 128 00 Prague 2 Czech Republic

Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A and M University College Station TX 77843

Department of Zoology National Museum 193 00 Prague Czech Republic

Department of Zoology University of Oxford OX1 3PS Oxford United Kingdom

Ethology Laboratory Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia 469 80 Paterna Spain

School of Biological Sciences University of Tasmania Hobart TAS 7005 Tasmania Australia

Science for Life Laboratory National Bioinformatics Infrastructure Sweden 751 23 Uppsala Sweden

Science for Life Laboratory Uppsala Department of Immunology Genetics and Pathology Uppsala University 752 36 Uppsala Sweden

Science for Life Laboratory Uppsala Department of Medical Biochemistry and Microbiology Uppsala University 752 36 Uppsala Sweden

Science for Life Laboratory Uppsala Department of Medical Biochemistry and Microbiology Uppsala University 752 36 Uppsala Sweden;

Zobrazit více v PubMed

McKinnon JS, Pierotti MER. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol Ecol. 2010;19:5101–5125. PubMed

Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol. 2014;23:5398–5414. PubMed

Sinervo B, Lively CM. The rock-paper-scissors game and the evolution of alternative male strategies. Nature. 1996;380:240–243.

Sinervo B, Svensson E. Correlational selection and the evolution of genomic architecture. Heredity (Edinb) 2002;89:329–338. PubMed

Roulin A. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev Camb Philos Soc. 2004;79:815–848. PubMed

Cuthill IC, et al. The biology of color. Science. 2017;357:eaan0221. PubMed

Olsson M, Stuart-Fox D, Ballen C. Genetics and evolution of colour patterns in reptiles. Semin Cell Dev Biol. 2013;24:529–541. PubMed

Cooper WE, Jr, Greenberg N. Reptilian coloration and behavior. In: Gans C, Crews D, editors. Biology of the Reptilia. Vol 18. Univ Chicago Press; Chicago: 1992. pp. 298–422.

McLean CA, Lutz A, Rankin KJ, Stuart-Fox D, Moussalli A. Revealing the biochemical and genetic basis of color variation in a polymorphic lizard. Mol Biol Evol. 2017;34:1924–1935. PubMed

Rankin KJ, McLean CA, Kemp DJ, Stuart-Fox D. The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evol Biol. 2016;16:179. PubMed PMC

Fitze PS, et al. Carotenoid-based colours reflect the stress response in the common lizard. PLoS One. 2009;4:e5111. PubMed PMC

Pérez i de Lanuza G, Font E, Carazo P. Color-assortative mating in a color-polymorphic lacertid lizard. Behav Ecol. 2013;24:273–279.

Pérez i de Lanuza G, Ábalos J, Bartolomé A, Font E. Through the eye of a lizard: Hue discrimination in a lizard with ventral polymorphic coloration. J Exp Biol. 2018;221:jeb169565. PubMed

Salvi D, Harris DJ, Kaliontzopoulou A, Carretero MA, Pinho C. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: Phylogeographic insights from the common wall lizard. BMC Evol Biol. 2013;13:147. PubMed PMC

Pérez i de Lanuza G, Sillero N, Carretero MA. Climate suggests environment-dependent selection on lizard colour morphs. J Biogeogr. 2018;45:2791–2802.

Sacchi R, et al. Microgeographic variation of colour morph frequency and biometry of common wall lizards. J Zool (Lond) 2007;273:389–396.

Pérez I de Lanuza G, Carretero MA, Font E. Intensity of male-male competition predicts morph diversity in a color polymorphic lizard. Evolution. 2017;71:1832–1840. PubMed

Calsbeek B, Hasselquist D, Clobert J. Multivariate phenotypes and the potential for alternative phenotypic optima in wall lizard (Podarcis muralis) ventral colour morphs. J Evol Biol. 2010;23:1138–1147. PubMed

Sacchi R, Mangiacotti M, Scali S, Ghitti M, Zuffi MAL. Effects of colour morph and temperature on immunity in males and females of the common wall lizard. Evol Biol. 2017;44:496–504.

Abalos J, Pérez i de Lanuza G, Carazo P, Font E. The role of male coloration in the outcome of staged contests in the European common wall lizard (Podarcis muralis) Behaviour. 2016;153:607–631.

Galeotti P, et al. Colour polymorphism alternative breeding strategies: Effects of parent’s colour morph on fitness traits in the common wall lizard. Evol Biol. 2013;40:385–394.

Sacchi R, et al. Seasonal variations of plasma testosterone among colour-morph common wall lizards (Podarcis muralis) Gen Comp Endocrinol. 2017;240:114–120. PubMed

Putnam NH, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. PubMed PMC

Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. PubMed PMC

Vujošević M, Blagojević J. The distribution of constitutive heterochromatin and nucleolus organizers in lizards of the family Lacertidae (Sauria) Genetika. 1999;31:269–276.

Olmo E, Odierna G, Capriglione T. Evolution of sex-chromosomes in lacertid lizards. Chromosoma. 1987;96:33–38.

Reeve HK, Pfennig DW. Genetic biases for showy males: Are some genetic systems especially conducive to sexual selection? Proc Natl Acad Sci USA. 2003;100:1089–1094. PubMed PMC

Kirkpatrick M, Hall DW. Sexual selection and sex linkage. Evolution. 2004;58:683–691. PubMed

Eriksson J, et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 2008;4:e1000010. PubMed PMC

Gazave E, Marqués-Bonet T, Fernando O, Charlesworth B, Navarro A. Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol. 2007;8:R21. PubMed PMC

Kaliontzopoulou A, Pinho C, Harris DJ, Carretero MA. When cryptic diversity blurs the picture: A cautionary tale from Iberian and North African Podarcis wall lizards. Biol J Linn Soc Lond. 2011;103:779–800.

Nordén KK, Price TD. Historical contingency and developmental constraints in avian coloration. Trends Ecol Evol. 2018;33:574–576. PubMed

Mundy NI, et al. Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol. 2016;26:1435–1440. PubMed

Lopes RJ, et al. Genetic basis for red coloration in birds. Curr Biol. 2016;26:1427–1434. PubMed PMC

Cooke TF, et al. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell. 2017;171:427–439.e21. PubMed PMC

Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: Co-option and a bag of magnificent developmental genetic tricks. Wiley Interdiscip Rev Dev Biol. 2018;7:e291. PubMed

Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347:1–16. PubMed PMC

Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis. 2009;32:333–342. PubMed

Uhlén M, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. PubMed

Tuttle EM, et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr Biol. 2016;26:344–350. PubMed PMC

Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:R288–R294. PubMed

Wang J, et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature. 2013;493:664–668. PubMed

Lamichhaney S, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax) Nat Genet. 2016;48:84–88. PubMed

Olson VA, Owens IPF. Costly sexual signals: Are carotenoids rare, risky or required? Trends Ecol Evol. 1998;13:510–514. PubMed

Dowell NL, et al. Extremely divergent haplotypes in two toxin gene complexes encode alternative venom types within rattlesnake species. Curr Biol. 2018;28:1016–1026.e4. PubMed PMC

Sagonas K, et al. Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity (Edinb) (September 26, 2018 doi: 10.1038/s41437-018-0146-2. PubMed DOI PMC

Heliconius Genome Consortium Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487:94–98. PubMed PMC

Jones MR, et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science. 2018;360:1355–1358. PubMed

Lamichhaney S, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 2015;518:371–375. PubMed

Feiner N, Rago A, While GM, Uller T. Signatures of selection in embryonic transcriptomes of lizards adapting in parallel to cool climate. Evolution. 2018;72:67–81. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...