Growth of the maternal intestine during reproduction
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FC001175
Wellcome Trust - United Kingdom
FC001317
Wellcome Trust - United Kingdom
R35 GM142697
NIGMS NIH HHS - United States
PubMed
40112802
PubMed Central
PMC12085284
DOI
10.1016/j.cell.2025.02.015
PII: S0092-8674(25)00200-4
Knihovny.cz E-zdroje
- Klíčová slova
- Fgfbp1, SGLT3a, adult organ remodeling, intestinal epithelium, isthmus progenitor, lactation, plasticity, pregnancy, reproduction, small intestine,
- MeSH
- enterocyty metabolismus cytologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- pohyb buněk MeSH
- rozmnožování * fyziologie MeSH
- střeva * růst a vývoj MeSH
- střevní sliznice metabolismus MeSH
- těhotenství MeSH
- tenké střevo * růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The organs of many female animals are remodeled by reproduction. Using the mouse intestine, a striking and tractable model of organ resizing, we find that reproductive remodeling is anticipatory and distinct from diet- or microbiota-induced resizing. Reproductive remodeling involves partially irreversible elongation of the small intestine and fully reversible growth of its epithelial villi, associated with an expansion of isthmus progenitors and accelerated enterocyte migration. We identify induction of the SGLT3a transporter in a subset of enterocytes as an early reproductive hallmark. Electrophysiological and genetic interrogations indicate that SGLT3a does not sustain digestive functions or enterocyte health; rather, it detects protons and sodium to extrinsically support the expansion of adjacent Fgfbp1-positive isthmus progenitors, promoting villus growth. Our findings reveal unanticipated specificity to physiological organ remodeling. We suggest that organ- and state-specific growth programs could be leveraged to improve pregnancy outcomes or prevent maladaptive consequences of such growth.
Department of Molecular and Cellular Biology Harvard University Cambridge MA 02138 USA
MRC Laboratory of Medical Sciences Hammersmith Hospital Campus Du Cane Road London W12 0NN UK
The Francis Crick Institute 1 Midland Road London NW1 1AT UK
Zobrazit více v PubMed
Cheng H, and Leblond CP (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141, 461–479. 10.1002/aja.1001410403. PubMed DOI
Cheng H, and Leblond CP (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141, 537–561. 10.1002/aja.1001410407. PubMed DOI
Clevers H (2013). The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284. 10.1016/j.cell.2013.07.004. PubMed DOI
Gehart H, and Clevers H (2019). Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16, 19–34. 10.1038/s41575-018-0081-y. PubMed DOI
van der Flier LG, and Clevers H (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71, 241–260. 10.1146/annurev.physiol.010908.163145. PubMed DOI
Beumer J, and Clevers H (2021). Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 22, 39–53. 10.1038/s41580-020-0278-0. PubMed DOI
Capdevila C, Miller J, Cheng L, Kornberg A, George JJ, Lee H, Botella T, Moon CS, Murray JW, Lam S, et al. (2024). Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 187, 3039–3055 e3014. 10.1016/j.cell.2024.05.001. PubMed DOI PMC
Malagola E, Vasciaveo A, Ochiai Y, Kim W, Zheng B, Zanella L, Wang ALE, Middelhoff M, Nienhuser H, Deng L, et al. (2024). Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 187, 3056–3071 e3017. 10.1016/j.cell.2024.05.004. PubMed DOI PMC
Stojanovic O, Miguel-Aliaga I, and Trajkovski M (2022). Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 4, 1444–1458. 10.1038/s42255-022-00679-6. PubMed DOI
Poo LJ, Lew W, and Addis T (1939). Protein anabolism of organs and tissues during pregnancy and lactation. J Biol Chem 128, 68–77.
Fell BF, Smith KA, and Campbell RM (1963). Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J Pathol Bacteriol 85, 179–188. 10.1002/path.1700850117. PubMed DOI
Hammond KA (1997). Adaptation of the maternal intestine during lactation. J Mammary Gland Biol Neoplasia 2, 243–252. 10.1023/a:1026332304435. PubMed DOI
Souders HJ, and Morgan AF (1957). Weight and composition of organs during the reproductive cycle in the rat. Am J Physiol 191, 1–7. 10.1152/ajplegacy.1957.191.1.1. PubMed DOI
Speakman JR (2008). The physiological costs of reproduction in small mammals. Philos Trans R Soc Lond B Biol Sci 363, 375–398. 10.1098/rstb.2007.2145. PubMed DOI PMC
Onji M, Sigl V, Lendl T, Novatchkova M, Ullate-Agote A, Andersson-Rolf A, Kozieradzki I, Koglgruber R, Pai TP, Lichtscheidl D, et al. (2024). RANK drives structured intestinal epithelial expansion during pregnancy. Nature. 10.1038/s41586-024-08284-1. PubMed DOI PMC
Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ, Bauer-Rowe KE, Xifaras ME, Akkad A, Arias E, et al. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58. 10.1038/nature17173. PubMed DOI PMC
Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, et al. (2015). Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 163, 1360–1374. 10.1016/j.cell.2015.11.004. PubMed DOI
McCullogh JS, Ratcliffe B, Mandir N, Carr KE, and Goodlad RA (1998). Dietary fibre and intestinal microflora: effects on intestinal morphometry and crypt branching. Gut 42, 799–806. 10.1136/gut.42.6.799. PubMed DOI PMC
Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, et al. (2012). mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495. 10.1038/nature11163. PubMed DOI PMC
Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, et al. (2020). Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459. 10.1038/s41586-020-2866-8. PubMed DOI PMC
Hudry B, Khadayate S, and Miguel-Aliaga I (2016). The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530, 344–348. 10.1038/nature16953. PubMed DOI PMC
Reiff T, Jacobson J, Cognigni P, Antonello Z, Ballesta E, Tan KJ, Yew JY, Dominguez M, and Miguel-Aliaga I (2015). Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930. 10.7554/eLife.06930. PubMed DOI PMC
Ahmed SMH, Maldera JA, Krunic D, Paiva-Silva GO, Penalva C, Teleman AA, and Edgar BA (2020). Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature 584, 415–419. 10.1038/s41586-020-2462-y. PubMed DOI PMC
Ameku T, Yoshinari Y, Texada MJ, Kondo S, Amezawa K, Yoshizaki G, Shimada-Niwa Y, and Niwa R (2018). Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 16, e2005004. 10.1371/journal.pbio.2005004. PubMed DOI PMC
Kandelouei T, Houghton ME, Lewis MR, Keller CC, Marchetti M, Kang X, and Edgar BA (2024). Mating and ecdysone signaling modify growth, metabolism, and digestive efficiency in the female Drosophila gut. bioRxiv. 10.1101/2024.11.19.624434. DOI
White MA, Bonfini A, Wolfner MF, and Buchon N (2021). Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc Natl Acad Sci U S A 118. 10.1073/pnas.2018112118. PubMed DOI PMC
Zipper L, Jassmann D, Burgmer S, Gorlich B, and Reiff T (2020). Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARgamma-homolog Eip75B in Drosophila. Elife 9. 10.7554/eLife.55795. PubMed DOI PMC
Zipper L, Corominas-Murtra B, and Reiff T (2025). Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila. Nat Commun 16, 436. 10.1038/s41467-024-55664-2. PubMed DOI PMC
Campbell RM, and Fell BF (1964). Gastro-Intestinal Hypertrophy in the Lactating Rat and Its Relation to Food Intake. J Physiol 171, 90–97. 10.1113/jphysiol.1964.sp007363. PubMed DOI PMC
Casirola DM, and Ferraris RP (2003). Role of the small intestine in postpartum weight retention in mice. Am J Clin Nutr 78, 1178–1187. 10.1093/ajcn/78.6.1178. PubMed DOI
Salic A, and Mitchison TJ (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105, 2415–2420. 10.1073/pnas.0712168105. PubMed DOI PMC
Gerdes J, Schwab U, Lemke H, and Stein H (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31, 13–20. 10.1002/ijc.2910310104. PubMed DOI
Potten CS (1998). Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353, 821–830. 10.1098/rstb.1998.0246. PubMed DOI PMC
Chaker Z, Segalada C, Kretz JA, Acar IE, Delgado AC, Crotet V, Moor AE, and Doetsch F (2023). Pregnancy-responsive pools of adult neural stem cells for transient neurogenesis in mothers. Science 382, 958–963. 10.1126/science.abo5199. PubMed DOI
Fernandes-Alnemri T, Litwack G, and Alnemri ES (1994). CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269, 30761–30764. PubMed
Gorczyca W, Bruno S, Darzynkiewicz R, Gong J, and Darzynkiewicz Z (1992). DNA strand breaks occurring during apoptosis - their early insitu detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. Int J Oncol 1, 639–648. 10.3892/ijo.1.6.639. PubMed DOI
Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, and et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43. 10.1038/376037a0. PubMed DOI
Hall PA, Coates PJ, Ansari B, and Hopwood D (1994). Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107 (Pt 12), 3569–3577. 10.1242/jcs.107.12.3569. PubMed DOI
Stojanovic O, Altirriba J, Rigo D, Spiljar M, Evrard E, Roska B, Fabbiano S, Zamboni N, Maechler P, Rohner-Jeanrenaud F, and Trajkovski M (2021). Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARalpha. Nat Commun 12, 7031. 10.1038/s41467-021-27133-7. PubMed DOI PMC
Datta UK, Datta AN, and Mukherjee S (1995). Role of hyperphagia in structural changes of small intestine during lactation. Indian J Physiol Pharmacol 39, 259–262. PubMed
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, and Page AJ (2021). Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 29, 1813–1824. 10.1002/oby.23224. PubMed DOI
Ladyman SR, Fieldwick DM, and Grattan DR (2012). Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction 144, 83–90. 10.1530/REP-12-0112. PubMed DOI
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, et al. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480. 10.1016/j.cell.2012.07.008. PubMed DOI PMC
Al-Asmakh M, and Zadjali F (2015). Use of Germ-Free Animal Models in Microbiota-Related Research. J Microbiol Biotechnol 25, 1583–1588. 10.4014/jmb.1501.01039. PubMed DOI
Schwarzer M, Gautam UK, Makki K, Lambert A, Brabec T, Joly A, Srutkova D, Poinsot P, Novotna T, Geoffroy S, et al. (2023). Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. Science 379, 826–833. 10.1126/science.ade9767. PubMed DOI
Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, et al. (2016). Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857. 10.1126/science.aad8588. PubMed DOI
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, and Leulier F (2011). Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14, 403–414. 10.1016/j.cmet.2011.07.012. PubMed DOI
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et al. (2017). A single-cell survey of the small intestinal epithelium. Nature 551, 333–339. 10.1038/nature24489. PubMed DOI PMC
Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, and Itzkovitz S (2018). Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 175, 1156–1167 e1115. 10.1016/j.cell.2018.08.063. PubMed DOI
Sotak M, Casselbrant A, Rath E, Zietek T, Stromstedt M, Adingupu DD, Karlsson D, Fritsch Fredin M, Ergang P, Pacha J, et al. (2021). Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 267, 118974. 10.1016/j.lfs.2020.118974. PubMed DOI
Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, et al. (2012). Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196. 10.2337/db11-1029. PubMed DOI PMC
Barcelona S, Menegaz D, and Diez-Sampedro A (2012). Mouse SGLT3a generates proton-activated currents but does not transport sugar. Am J Physiol Cell Physiol 302, C1073–1082. 10.1152/ajpcell.00436.2011. PubMed DOI
Diez-Sampedro A, Wright EM, and Hirayama BA (2001). Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. J Biol Chem 276, 49188–49194. 10.1074/jbc.M108286200. PubMed DOI
Parent L, Supplisson S, Loo DD, and Wright EM (1992). Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol 125, 49–62. 10.1007/BF00235797. PubMed DOI
Parent L, Supplisson S, Loo DD, and Wright EM (1992). Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol 125, 63–79. 10.1007/BF00235798. PubMed DOI
Oginuma M, Harima Y, Tarazona OA, Diaz-Cuadros M, Michaut A, Ishitani T, Xiong F, and Pourquie O (2020). Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98–101. 10.1038/s41586-020-2428-0. PubMed DOI PMC
Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo E, and Liberali P (2021). Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat Cell Biol 23, 733–744. 10.1038/s41556-021-00700-2. PubMed DOI PMC
Wolf KJ, Daft JG, Tanner SM, Hartmann R, Khafipour E, and Lorenz RG (2014). Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice. J Histochem Cytochem 62, 237–250. 10.1369/0022155413519650. PubMed DOI PMC
Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W, Hilgers K, Manzel A, Schwartz C, Kleinewietfeld M, et al. (2015). High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest 125, 4223–4238. 10.1172/JCI80919. PubMed DOI PMC
Aliluev A, Tritschler S, Sterr M, Oppenlander L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A, et al. (2021). Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 3, 1202–1216. 10.1038/s42255-021-00458-9. PubMed DOI PMC
Taylor SR, Ramsamooj S, Liang RJ, Katti A, Pozovskiy R, Vasan N, Hwang SK, Nahiyaan N, Francoeur NJ, Schatoff EM, et al. (2021). Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597, 263–267. 10.1038/s41586-021-03827-2. PubMed DOI PMC
Aoki M, Wartenberg P, Grunewald R, Phillipps HR, Wyatt A, Grattan DR, and Boehm U (2019). Widespread Cell-Specific Prolactin Receptor Expression in Multiple Murine Organs. Endocrinology 160, 2587–2599. 10.1210/en.2019-00234. PubMed DOI
Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E, and Matic Vignjevic D (2019). Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710. 10.1126/science.aau3429. PubMed DOI
Rodriguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, Sacchetti A, Hornsveld M, Oost KC, Snippert HJ, et al. (2017). Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427. 10.1038/nature21673. PubMed DOI
Zhang J, Tian R, Liu J, Yuan J, Zhang S, Chi Z, Yu W, Yu Q, Wang Z, Chen S, et al. (2024). A two-front nutrient supply environment fuels small intestinal physiology through differential regulation of nutrient absorption and host defense. Cell 187, 6251–6271 e6220. 10.1016/j.cell.2024.08.012. PubMed DOI
Zwick RK, Kasparek P, Palikuqi B, Viragova S, Weichselbaum L, McGinnis CS, McKinley KL, Rathnayake A, Vaka D, Nguyen V, et al. (2024). Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. Nat Cell Biol 26, 250–262. 10.1038/s41556-023-01337-z. PubMed DOI PMC
Gore SA, Brown DM, and West DS (2003). The role of postpartum weight retention in obesity among women: a review of the evidence. Ann Behav Med 26, 149–159. 10.1207/S15324796ABM2602_07. PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, and Salzberg SL (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915. 10.1038/s41587-019-0201-4. PubMed DOI PMC
Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2, 100141. 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Yu G, Wang LG, Han Y, and He QY (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287. 10.1089/omi.2011.0118. PubMed DOI PMC
Phipson B, Sim CB, Porrello ER, Hewitt AW, Powell J, and Oshlack A (2022). propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726. 10.1093/bioinformatics/btac582. PubMed DOI PMC
Bates D, Mächler M, Bolker B, and Walker S (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48.
Kuznetsova A, Brockhoff PB, and Christensen RH (2017). lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw 82, 1–22.
Moore J, Basurto-Lozada D, Besson S, Bogovic J, Bragantini J, Brown EM, Burel JM, Casas Moreno X, de Medeiros G, Diel EE, et al. (2023). OME-Zarr: a cloud-optimized bioimaging file format with international community support. Histochem Cell Biol 160, 223–251. 10.1007/s00418-023-02209-1. PubMed DOI PMC
Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, Stadler MB, Strnad P, Papasaikas P, Vischi D, et al. (2019). Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72. 10.1038/s41586-019-1146-y. PubMed DOI PMC
van der Walt S, Schonberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, and scikit-image, c. (2014). scikit-image: image processing in Python. PeerJ 2, e453. 10.7717/peerj.453. PubMed DOI PMC
Tough IR, Forbes S, Tolhurst R, Ellis M, Herzog H, Bornstein JC, and Cox HM (2011). Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y(1) and Y(2) receptors. Br J Pharmacol 164, 471–484. 10.1111/j.1476-5381.2011.01401.x. PubMed DOI PMC
Magness ST, Puthoff BJ, Crissey MA, Dunn J, Henning SJ, Houchen C, Kaddis JS, Kuo CJ, Li L, Lynch J, et al. (2013). A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 305, G542–551. 10.1152/ajpgi.00481.2012. PubMed DOI PMC
Risso D, Ngai J, Speed TP, and Dudoit S (2014). Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32, 896–902. 10.1038/nbt.2931. PubMed DOI PMC
Liao Y, Smyth GK, and Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 10.1093/bioinformatics/btt656. PubMed DOI
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529. 10.1016/j.cell.2021.04.048. PubMed DOI PMC
Hafemeister C, and Satija R (2019). Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296. 10.1186/s13059-019-1874-1. PubMed DOI PMC
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, Hudelle R, Qaiser T, Matson KJE, Barraud Q, et al. (2021). Confronting false discoveries in single-cell differential expression. Nat Commun 12, 5692. 10.1038/s41467-021-25960-2. PubMed DOI PMC
Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, and Satija R (2024). Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 42, 293–304. 10.1038/s41587-023-01767-y. PubMed DOI PMC
Marconato L, Palla G, Yamauchi KA, Virshup I, Heidari E, Treis T, Vierdag WM, Toth M, Stockhaus S, Shrestha RB, et al. (2024). SpatialData: an open and universal data framework for spatial omics. Nat Methods. 10.1038/s41592-024-02212-x. PubMed DOI PMC
Lenth R (2024). emmeans: Estimated Marginal Means, aka Least-Squares Means.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. (2017). QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878. 10.1038/s41598-017-17204-5. PubMed DOI PMC
Acs B, Pelekanou V, Bai Y, Martinez-Morilla S, Toki M, Leung SCY, Nielsen TO, and Rimm DL (2019). Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study. Lab Invest 99, 107–117. 10.1038/s41374-018-0123-7. PubMed DOI
Hein AL, Mukherjee M, Talmon GA, Natarajan SK, Nordgren TM, Lyden E, Hanson CK, Cox JL, Santiago-Pintado A, Molani MA, et al. (2021). QuPath Digital Immunohistochemical Analysis of Placental Tissue. J Pathol Inform 12, 40. 10.4103/jpi.jpi_11_21. PubMed DOI PMC