Idahoa and Subularia: Hidden polyploid origins of two enigmatic genera of crucifers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35912547
DOI
10.1002/ajb2.16042
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, CES clade, Cruciferae, Hyb-Seq, Lineage V, Subularieae, mesopolyploidy, plastome phylogeny, repeatome, whole-genome duplication,
- MeSH
- Bayesova věta MeSH
- Brassicaceae * genetika MeSH
- fylogeneze MeSH
- genom MeSH
- molekulární evoluce MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PREMISE: The monotypic Idahoa (I. scapigera) and the bispecific Subularia (S. aquatica and S. monticola) belong to Brassicaceae with unclear phylogenetic relationships and no tribal assignment. To fill this knowledge gap, we investigated these species and their closest relatives by combining cytogenomic and phylogenomic methods. METHODS: We used whole plastome sequences in maximum likelihood and Bayesian inference analyses. We tested the phylogenetic informativeness of shared genomic repeats. We combined nuclear gene tree reconciliation and comparative chromosome painting (CCP) to examine the occurrence of past whole-genome duplications (WGDs). RESULTS: The plastid data set corroborated the sister relationship between Idahoa and Subularia within the crucifer Lineage V but failed to resolve consistent topologies using both inference methods. The shared repetitive sequences provided conflicting pwhylogenetic signals. CCP analysis unexpectedly revealed that Idahoa (2n = 16) has a diploidized mesotetraploid genome, whereas two Subularia species (2n = 28 and 30) have diploidized mesoctoploid genomes. Several ancient allopolyploidy events have also been detected in closely related taxa (Chamira circaeoides, Cremolobeae, Eudemeae, and Notothlaspideae). CONCLUSIONS: Our results suggest that the contentious phylogenetic placement of Idahoa and Subularia is best explained by two WGDs involving one or more shared parental genomes. The newly identified mesopolyploid genomes highlight the challenges of studying plant clades with complex polyploidy histories and provide a better framework for understanding genome evolution in the crucifer family.
Zobrazit více v PubMed
Al-Shehbaz, I. A. 2012. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61: 931-954.
Altschul, S. F., W Gish. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
Barker, M. S., B. C. Husband, and J. C. Pires. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. American Journal of Botany 103: 1139-1145.
Beilstein, M. A., I. A. Al-Shehbaz, S. Mathews, and E. A. Kellogg. 2008. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. American Journal of Botany 95: 1307-1327.
Benson, G. 1998. An algorithm for finding tandem repeats of unspecified pattern size. In RECOMB '98: Proceedings of the Second Annual International Conference on Computational Molecular Biology (ACM), March 1998, 20-29. Website: https://doi.org/10.1145/279069.279079
Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Couvreur, T. L. P., A. Franzke, I. A. Al-Shehbaz, F. T. Bakker, M. A. Koch, and K. Mummenhoff. 2010. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Molecular Biology and Evolution 27: 55-71.
Dawson, M. I., and E. J. Beuzenberg. 2000. Contributions to a chromosome atlas of the New Zealand flora-36. Miscellaneous families. New Zealand Journal of Botany 38: 1-23.
de Candolle, A. P. 1821. Mémoire sur la famille des Crucifères. Mémoires du Muséum d'histoire naturelle, Paris, France.
Dierckxsens, N., P. Mardulyn, and G. Smits. (2016). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45: e18.
Dogan, M., M. Pouch, T. Mandáková, P. Hloušková, X. Guo, P. Winter, et al. 2021. Evolution of tandem repeats is mirroring post-polyploid cladogenesis in Heliophila (Brassicaceae). Frontiers in Plant Science 11: 1944.
Doležel, J., J. Greilhuber, and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233.
Douglas, G. W., D. V. Meidinger, and J. Pojar. 1999. Illustrated flora of British Columbia, vol. 3, Dicotyledons (Diapensiaceae through Onagraceae). British Columbia Ministry of Environment, Lands and Parks and British Columbia Ministry of Forests, Victoria, BC, Canada.
Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973.
Farhat, P., O. Hidalgo, T. Robert, S. Siljak-Yakovlev, I. J. Leitch, R. P. Adams, et al. 2019. Polyploidy in the conifer genus Juniperus: an unexpectedly high rate. Frontiers in Plant Science 10: 676.
Fawcett, J. A., S. Maere, and Y. Van de Peer. 2009. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences, USA 106: 5737-5742.
Forsythe, E. S., A. D. L. Nelson, and M. A. Beilstein. 2020. Biased gene retention in the face of introgression obscures species relationships. Genome Biology and Evolution 12: 1646-1663.
Geiser, C., T. Mandáková, N. Arrigo, M. A. Lysak, and C. Parisod. 2016. Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard. Plant Cell 28: 17-27.
German, D. A., and N. W. Friesen. 2014. Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. Turczaninowia 17: 17-23.
Guo, X., T. Mandáková, K. Trachtová, B. Özüdoğru, J. Liu, and M. A. Lysak. 2021. Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Molecular Biology and Evolution 38: 1695-1714.
Heenan, P. B. 2019. A taxonomic revision of Notothlaspi (Brassicaceae), a specialist alpine genus from New Zealand. Phytotaxa 399: 248-260.
Huang, D. I., and Q. C. B. Cronk. 2015. Plann: a command-line application for annotating plastome sequences. Applications in Plant Sciences 3: 1500026.
Huang, L., Y. Ma, J. Jiang, T. Li, W. Yang, L. Zhang, L. Wu, et al. 2020. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance. Horticulture Research 7: 1-12.
Huang, C.-H., R. Sun, Y. Hu, L. Zeng, N. Zhang, L. Cai, Q. Zhang, et al. 2016. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Molecular Biology and Evolution 33: 394-412.
Huson, D. H., and D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254-267.
Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100.
Johnson, M. G., E. M. Gardner, Y. Liu, R. Medina, B. Goffinet, A. J. Shaw, et al. 2016. HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4: 1600016.
Kagale, S., S. J. Robinson, J. Nixon, R. Xiao, T. Huebert, J. Condie, D. Kessler, et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26: 2777-2791.
Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Kohany, O., A. J. Gentles, L. Hankus, and J. Jurka. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: 474.
Kiefer, M., R. Schmickl, D. A. German, T. Mandáková, M. A. Lysak, I. A. Al-Shehbaz, A. Franzke, et al. 2014. BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiology 55: e3.
Koch, M., B. Haubold, and T. Mitchell-Olds. 2001. Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. American Journal of Botany 88: 534-544.
Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecualar Biology and Evolution 34: 772-773.
Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357.
Li, Z., A. E. Baniaga, E. B. Sessa, M. Scascitelli, S. W. Graham, L. H. Rieseberg, and M. S. Barker. 2015. Early genome duplications in conifers and other seed plants. Science Advances 1: e1501084.
Li, Z., and M. S. Barker. 2020. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Gigascience 9: giaa004.
Lott, M., A. Spillner, K. T. Huber, A. Petri, B. Oxelman, and V. Moulton. 2009. Inferring polyploid phylogenies from multiply-labeled gene trees. BMC Evolutionary Biology 9: 1-11.
Lysak, M. A., M. A. Koch, A. Pecinka, and I. Schubert. 2005. Chromosome triplication found across the tribe Brassiceae. Genome Research 15: 516-525.
Lysak, M. A., T. Mandáková, and M. E. Schranz. 2016. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology 30: 108-115.
Mandáková, T., and M. A. Lysak. 2016a. Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology 1: 43-51.
Mandáková, T., and M. A. Lysak. 2016b. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Current Protocols in Plant Biology 1: 359-371.
Mandáková, T., and M. A. Lysak. 2018. Post-polyploid diploidization and diversification through dysploid changes. Current Opinions in Plant Biology 42: 55-65.
Mandáková, T., S. Joly, M. Krzywinski, K. Mummenhoff, and M. A. Lysak. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277-2290.
Mandáková, T., K. Mummenhoff, I. A. Al-Shehbaz, L. Mucina, A. Mühlhausen, and M. A. Lysak. 2012. Whole-genome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). Taxon 61: 989-1000.
Mandáková, T., Z. Li, M. S. Barker, and M. A. Lysak. 2017a. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant Journal 91: 3-21.
Mandáková, T., M. Pouch, K. Harmanová, S. H. Zhan, I. Mayrose, and M. A. Lysak. 2017b. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Molecular Ecology 26: 6445-6462.
Mitchell, A. D., and P. B. Heenan. 2000. Systematic relationships of New Zealand endemic Brassicaceae inferred from nrDNA ITS sequence data. Systematic Botany 25: 98-105.
Morales-Briones, D. F., A. Liston, and D. C. Tank. 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytologist 218: 1668-1684.
Mulligan, G. A., and J. A. Calder. 1964. The genus Subularia (Cruciferae). Rhodora 66: 127-135.
NCBI [National Center for Biotechnology Information]. 2011. The GenBank Submissions Handbook [online], NCBI Help manual. National Center for Biotechnology Information, Bethesda, MD, USA. Website: https://www.ncbi.nlm.nih.gov/books/NBK51157/.
Negm, S., A. Greenberg, A. M. Larracuente, A. M., and J. S. Sproul. 2021. RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Molecular Ecology Resources 21: 969-981.
Neumann, P., P. Novák, N. Hoštáková, and J. Macas. 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10: 1-17.
Nguyen, L.-T., H. A. Schmidt, A. von Haeseler, and B. Q. Minh. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
Nikolov, L. A., P. Shushkov, B. Nevado, X. Gan, I. A. Al-Shehbaz, D. Filatov, C. D. Bailey, and M. Tsiantis. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist 222: 1638-1651.
Novák, P., P. Neumann, J. Pech, J. Steinhaisl, and J. Macas. 2013. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792-793.
Novák, P., L. Á. Robledillo, A. Koblížková, I. Vrbová, P. Neumann, and J. Macas. 2017. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research 45: e111.
Novák, P., P. Neumann, and J. Macas. 2020. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols 15: 3745-3776.
Nowak, J. S., J. Ono, and Q. C. B. Cronk. 2010. Anatomical study of an aquatic mustard: Subularia aquatica (Brassicaceae). Aquatic Botany 93: 55-58.
Parkin, I. A. P., S. M. Gulden, A. G. Sharpe, L. Lukens, M. Trick, T. C. Osborn, and D. J. Lydiate. 2005. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171: 765-781.
Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901.
Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, et al. 2015. The Chromosome Counts Database (CCDB)-a community resource of plant chromosome numbers. New Phytologist 206: 19-26.
Salariato, D. L., F. O. Zuloaga, A. Franzke, K. Mummenhoff, and I. A. Al-Shehbaz. 2016. Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. Botanical Journal of the Linnean Society 181: 543-566.
Soltis, P. S., and D. E. Soltis. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinions in Plant Biology 30: 159-165.
Sonnhammer, E. L. L., and R. Durbin. 1995. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1-GC10.
Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, and A. Rambaut. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evology 4: vey016.
Talavera, G., and J. Castresana. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564-577.
Temsch, E. M., J. Greilhuber, and R. Krisai. 2010. Genome size in liverworts. Preslia 82: 63-80.
Thomas, G. W. C., S. H. Ather, and M. W. Hahn. 2017. Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Systematic Biology 66: 1007-1018.
Toro-Núñez, O., A. Leiva-Salcedo, N. Fernández-Alarcón, A. Ruiz-Lozano, C. M. Baeza, and E. Ruiz-Ponce. 2018. Report of chromosome number and karyotype asymmetry in Schizopetalon Sims. and related genera from the South American tribe Schizopetalae (Brassicaceae). Caryologia 71: 315-321.
van der Auwera, G. A., and B. D. O'Connor. 2020. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O'Reilly Media Inc., Sebastopol, California, USA.
Van de Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411.
Walden, N., D. A. German, E. M. Wolf, M. Kiefer, P. Rigault, X.-C. Huang, C. Kiefer, et al. 2020. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nature Communications 11: 3795.
Wang, J., J. Qin, P. Sun, X. Ma, J. Yu, Y. Li, S. Sun, et al. 2019. Polyploidy index and its implications for the evolution of polyploids. Frontiers in Genetics 10: 807.
Warwick, S. I., and I. A. Al-Shehbaz. 2006. Brassicaceae: chromosome number index and database on CD-Rom. Plant Systematics and Evolution 259: 237-248.
Warwick, S. I., K. Mummenhoff, C. A. Sauder, M. A. Koch, and I. A. Al-Shehbaz. 2010. Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Systematics and Evolution 285: 209-232.
Xiang, Y., C.-H. Huang, Y. Hu, J. Wen, S. Li, T. Yi, H. Chen, et al. 2017. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34: 262-281.
Zhang, J., Y. Tian, L. Yan, G. Zhang, X. Wang, Y. Zeng, J. Zhang, et al. 2016. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the central Andes. Molecular Plant 9: 1066-1077.
Zwaenepoel, A., and Y. Van de Peer. 2019. wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35: 2153-2155.