Genomes, repeatomes and interphase chromosome organization in the meadowfoam family (Limnanthaceae, Brassicales)
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35352402
DOI
10.1111/tpj.15750
Knihovny.cz E-resources
- Keywords
- Brassicales, DNA repeats, Limnanthes, Rabl, chromosomes, interphase, meadowfoam, repeatome,
- MeSH
- Arabidopsis * genetics MeSH
- Chromosomes MeSH
- Phylogeny MeSH
- In Situ Hybridization, Fluorescence MeSH
- Interphase MeSH
- Magnoliopsida * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The meadowfoam family (Limnanthaceae) is one of the smallest and genomically underexplored families of the Brassicales. The Limnanthaceae harbor about seven species in the genus Limnanthes (meadowfoam) and Floerkea proserpinacoides (false mermaidweed), all native to North America. Because all Limnanthes and Floerkea species have only five chromosome pairs, i.e., a chromosome number rare in Brassicales and shared with Arabidopsis thaliana (Arabidopsis), we examined the Limnanthaceae genomes as a potential model system. Using low-coverage whole-genome sequencing data, we reexamined phylogenetic relationships and characterized the repeatomes of Limnanthaceae genomes. Phylogenies based on complete chloroplast and 35S rDNA sequences corroborated the sister relationship between Floerkea and Limnanthes and two major clades in the latter genus. The genome size of Limnanthaceae species ranges from 1.5 to 2.1 Gb, apparently due to the large increase in DNA repeats, which constitute 60-70% of their genomes. Repeatomes are dominated by long terminal repeat retrotransposons, while tandem repeats represent only less than 0.5% of the genomes. The average chromosome size in Limnanthaceae species (340-420 Mb) is more than 10 times larger than in Arabidopsis (32 Mb). A three-dimensional fluorescence in situ hybridization analysis demonstrated that the five chromosome pairs in interphase nuclei of Limnanthes species adopt the Rabl-like configuration.
See more in PubMed
Agerbirk, N., Pattison, D., Mandáková, T., Lysak, M.A., Montaut, S. & Staerk, D. (2022) Ancient biosyntheses in an oil crop: glucosinolate profiles in Limnanthes alba and its relatives (Limnanthaceae, Brassicales). Journal of Agricultural and Food Chemistry, 70, 1134-1147.
Armstrong, S.J., Franklin, F.C. & Jones, G.H. (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. Journal of Cell Science, 114, 4207-4217.
Arroyo, M.T.K. (1973) Chiasma frequency evidence on the evolution of autogamy in Limnanthes floccosa (Limnanthaceae). Evolution, 27, 679-688.
Bagci, C., Bryant, D., Cetinkaya, B. & Huson, D.H. (2021) Microbial phylogenetic context using phylogenetic outlines. Genome Biology and Evolution, 1, evab213.
Barker, M.S., Vogel, H. & Schranz, M.E. (2009) Paleopolyploidy in the Brassicales: analyses of the cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biology and Evolution, 1, 391-399.
Baskin, J.M., Baskin, C.C. & McCann, M.T. (1988) A contribution to the germination ecology of Floerkea proserpinacoides (Limnanthaceae). Botanical Gazette, 149, 427-431.
Beric, A., Mabry, M.E., Harkess, A.E., Brose, J., Schranz, M.E., Conant, G.C. et al. (2021) Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). Genes, Genomes, Genetics, 11, jkab140.
Cardinal-McTeague, W.M., Sytsma, K.J. & Hall, J.C. (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molecular Phylogenetics and Evolution, 99, 204-224.
Chang, Y., Liu, H., Liu, M. et al. (2019) The draft genomes of five agriculturally important African orphan crops. GigaScience, 8, giy152.
Charlesworth, B., Sniegowski, P. & Stephan, W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215-220.
Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884-i890.
Cheng, S., Bergh, V.D.E., Zeng, P. et al. (2013) The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. The Plant Cell, 25, 2813-2830.
Cossu, R.M., Casola, C., Giacomello, S., Vidalis, A., Scofield, D.G. & Zuccolo, A. (2017) LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biology and Evolution, 9, 3449-3462.
Coster, W.D., D'Hert, S., Schultz, D.T., Cruts, M. & Broeckhoven, C.V. (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34, 2666-2669.
Doležel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry, 51, 127-128.
Doležel, J., Greilhuber, J. & Suda, J. (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233-2244.
Dong, F. & Jiang, J. (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Research, 6, 551-558.
Edger, P.P., Hall, J.C., Harkess, A., Tang, M., Coombs, J., Mohammadin, S. et al. (2018) Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. American Journal of Botany, 105, 463-469.
Elliott, T.A. & Gregory, T.R. (2015) What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140331.
Fransz, P., De Jong, J.H., Lysak, M., Castiglione, M.R. & Schubert, I. (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences of the United States of America, 99, 14584-14589.
Fries, M. (1936) Über die Chromosomenzahl bei zwei Limnanthes-Arten. Svensk Botanisk Tidskrift, 30, 440-442.
Healey, A., Furtado, A., Cooper, T. & Henry, R.J. (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods, 10, 1-8.
Hloušková, P., Mandáková, T., Pouch, M., Trávníček, P. & Lysak, M.A. (2019) The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Annals of Botany, 124, 103-120.
Houle, G. (2002) The advantage of early flowering in the spring ephemeral annual plant Floerkea proserpinacoides. New Phytologist, 154, 689-694.
Howe, E.S., Murphy, S.P. & Bass, H.W. (2013) Three-dimensional acrylamide fluorescence in situ hybridization for plant cells. Methods in Molecular Biology, 990, 53-66.
Huang, D.I. & Cronk, Q.C. (2015) Plann: a command-line application for annotating plastome sequences. Applications in Plant Sciences, 3, 1500026.
Hurel, A., Phillips, D., Vrielynck, N., Mézard, C., Grelon, M. & Christophorou, N. (2018) A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. The Plant Journal, 95, 386-396.
Ijdo, J.W., Wells, R.A., Baldini, A. & Reeders, S.T. (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research, 19, 4780.
Jedlicka, P., Lexa, M. & Kejnovsky, E. (2020) What can long terminal repeats tell us about the age of LTR retrotransposons, gene conversion and ectopic recombination? Frontiers in Plant Science, 11, 644.
Jenderek, M.M. & Hannan, R.M. (2009) Diversity in seed production characteristics within the USDA-ARS Limnanthes alba germplasm collection. Crop Science, 49, 1387-1394.
Jin, J.J., Yu, W.B., Yang, J.B., Song, Y., DePamphilis, C.W., Yi, T.S. et al. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 1-31.
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
Kelly, L.J., Renny-Byfield, S., Pellicer, J. et al. (2015) Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytologist, 208, 596-607.
Laibach, F. (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Botanisches Centralblatt, 22, 191-210.
Li, H.-T., Luo, Y., Gan, L., Ma, P.-F., Gao, L.-M., Yang, J.-B. et al. (2021) Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology, 19, 1-13.
Lysak, M.A. (2018) Brassicales: an update on chromosomal evolution and ancient polyploidy. Plant Systematics and Evolution, 304, 757-762.
Mandáková, T., Joly, S., Krzywinski, M., Mummenhoff, K. & Lysak, M.A. (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. The Plant Cell, 22, 2277-2290.
Mandáková, T. & Lysak, M.A. (2016a) Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology, 1, 43-51.
Mandáková, T. & Lysak, M.A. (2016b) Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Current Protocols in Plant Biology, 1, 359-371.
Mason, C.T. (1952) A systematic study of the genus Limnanthes R. Br. Br. University of California Publications in Botany, 25, 455-512.
Maumus, F. & Quesneville, H. (2014) Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS One, 9, e94101.
Melters, D.P., Bradnam, K.R., Young, H.A., Telis, N., May, M.R., Ruby, J.G. et al. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 14, 1-20.
Meyers, S.C., Liston, A. & Meinke, R. (2010) A molecular phylogeny of Limnanthes (Limnanthaceae) and investigation of an anomalous Limnanthes population from California, USA. Systematic Botany, 35, 552-558.
Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H. et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452, 991-996.
Negm, S., Greenberg, A., Larracuente, A.M. & Sproul, J.S. (2021) RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Molecular Ecology Resources, 21, 969-981.
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 10, 1-17.
Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.
Novák, P., Ávila Robledillo, L., Koblížková, A., Vrbová, I., Neumann, P. & Macas, J. (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45, e111.
Novák, P., Guignard, M.S., Neumann, P. et al. (2020) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 6, 1325-1329.
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 29, 792-793.
One Thousand Plant Transcriptomes Initiative. (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574, 679-685.
Palmer, J.D. (1983) Chloroplast DNA exists in two orientations. Nature, 301, 92-93.
Pecinka, A., Schubert, V., Meister, A., Kreth, G., Klatte, M., Lysak, M.A. et al. (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma, 113, 258-269.
Pontvianne, F. & Grob, S. (2020) Three-dimensional nuclear organization in Arabidopsis thaliana. Journal of Plant Research, 133, 479-488.
Pouokam, M., Cruz, B., Burgess, S., Segal, M.R., Vazquez, M. & Arsuaga, J. (2019) The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Scientific Reports, 9, 1-10.
Propach, H. (1934) Cytological investigations on Limnanthes douglasii R. Br. Zeitschrift Zellforschung, 21, 357-375.
Quesneville, H. (2020) Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mobile DNA, 11, 1-13.
Rockinger, A., Sousa, A., Carvalho, F.A. & Renner, S.S. (2016) Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. American Journal of Botany, 103, 1082-1088.
Saunders, V.A. & Houben, A. (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome, 44, 955-961.
Shan, W., Kubová, M., Mandáková, T. & Lysak, M.A. (2021) Nuclear organization in crucifer genomes: nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae. The Plant Journal, 108, 528-540.
Stenar, H. (1925) Embryologische und zytologische Studien über Limnanthes douglasii R.Br. Svensk Botanisk Tidskrift, 19, 133-152.
Swanepoel, W., Chase, M.W., Christenhusz, M.J., Maurin, O., Forest, F. & Vanwyk, A.E. (2020) From the frying pan: an unusual dwarf shrub from Namibia turns out to be a new brassicalean family. Phytotaxa, 439, 171-185.
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577.
The Angiosperm Phylogeny Group IV. (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
Tian, Y., Zeng, Y., Zhang, J., Yang, C., Yan, L., Wang, X. et al. (2015) High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Science China Life Sciences, 58, 627-638.
Tucker, G.C. (1993) Limnanthaceae. Flora of North America Editorial Committee, 7, 172-183.
Vitales, D., Garcia, S. & Dodsworth, S. (2020) Reconstructing phylogenetic relationships based on repeat sequence similarities. Molecular Phylogenetics and Evolution, 147, 106766.
Vu, G.T.H., Cao, H.X., Reiss, B. & Schubert, I. (2017) Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytologist, 214, 1712-1721.
Wang, B., Jia, Y., Jia, P., Dong, Q., Yang, X. & Ye, K. (2021) High-quality Arabidopsis thaliana genome assembly with nanopore and HiFi long reads. Genomics, Proteomics & Bioinformatics. https://doi.org/10.1016/j.gpb.2021.08.003.
Wang, W. & Lanfear, R. (2019) Long-reads reveal that the chloroplast genome exists in two distinct versions in most plants. Genome Biology and Evolution, 11, 3372-3381.
Zerpa-Catanho, D.P., Jatt, T. & Ming, R. (2021) Karyotype and genome size determination of Jarilla chocola, an additional sister clade of Carica papaya. Plant Omics, 14, 50-56.
Complementing model species with model clades