The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35916590
DOI
10.1111/tpj.15931
Knihovny.cz E-zdroje
- Klíčová slova
- Camelina, Brassicaceae, allopolyploidy, chromosome rearrangements, false flax, genome evolution, hybridization,
- MeSH
- Arabidopsis * genetika MeSH
- Brassicaceae * genetika MeSH
- diploidie MeSH
- genom rostlinný genetika MeSH
- polyploidie MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hexaploid camelina (Camelina sativa; 2n = 6x = 40) is an important oilseed crop closely related to Arabidopsis. Compared to other polyploid crops, the origin of the three camelina subgenomes has begun to be unveiled only recently. While phylogenomic studies identified the diploid C. hispida (2n = 2x = 14) as the paternal genome of C. sativa, the maternal donor genome remained unknown. Because the chromosomes assigned to a putative maternal genome resembled those of diploid C. neglecta (2n = 12), a tetraploid C. neglecta-like genome (2n = 4x = 26) was hypothesized to be the likely maternal ancestor of the hexaploid crop. Here we report the chromosome-level structure of the predicted tetraploid Camelina genome identified among genotypes previously classified together as C. microcarpa and referred to here as C. intermedia. Detailed cytogenomic analysis of the tetraploid genome revealed high collinearity with two maternally inherited subgenomes of the hexaploid C. sativa. The identification of the missing donor tetraploid genome provides new insights into the reticulate evolutionary history of the Camelina polyploid complex and allows us to postulate a comprehensive evolutionary model for the genus. The herein elucidated origin of the C. sativa genome opens the door for subsequent genome modifications and resynthesis of the allohexaploid camelina genome.
Zobrazit více v PubMed
Al-Shehbaz, I.A. & Beilstein, M.A. (2010) Camelina. In: Editorial Committee (Ed.) Flora of North America North of Mexico, Vol. 7. New York and Oxford: Oxford University Press, pp. 451-453.
Becker, H.C., Engqvist, G.M. & Karlsson, B. (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 91, 62-67.
Beilstein, M.A., Al-Shehbaz, I.A., Mathews, S. & Kellogg, E.A. (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF se- quence data: Tribes and trichomes revisited. American Journal of Botany, 95, 1307-1327.
Berti, M., Gesch, R., Eynck, C., Anderson, J. & Cermak, S.C. (2016) Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710.
Brock, J.R., Dönmez, A.A., Beilstein, M.A. & Olsen, K.M. (2018) Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Molecular Phylogenetics and Evolution, 127, 834-842.
Brock, J.R., Mandáková, T., Lysak, M.A. & Al-Shehbaz, I.A. (2019) Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys, 115, 51-57.
Brock, J.R., Mandáková, T., McKain, M., Lysak, M.A. & Olsen, K.M. (2022) Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa. Horniculture Reseach, 9, uhab050.
Brock, J.R., Ritchey, M.M. & Olsen, K. (2022) Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. American Journal of Botany, 109, 1177-1190. https://doi.org/10.1002/ajb2.16027
Čalasan, A.Ž., Seregin, A.P., Hurka, H., Hoffor, N.P. & Neuffer, B. (2019) The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora, 260, 151477.
Chaudhary, R., Koh, C.S., Kagale, S., Tang, L., Wu, S.W. et al. (2020) Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa. G3: Genes, Genomes, Genetics, 10, 1297-1308.
Girke, A., Schierholt, A. & Becker, H.C. (2012) Extending the rapeseed genepool with resynthesized Brassica napus L. I: genetic diversity. Genetic Resources and Crop Evolution, 59, 1441-1447.
Gugel, R.K. & Falk, K.C. (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86, 1047-1058.
Gunstone, F.D. & Harwood, J.L. (2007) Occurrence and characterization of oils and fats. In: Gunstone, F.D., Harwood, J.L. & Dijkstra, A.J. (Eds.) The lipid handbook, 3rd edition, Boca Raton: CRC, pp. 37-142.
Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J. et al. (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biology, 10, 233.
Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E. et al. (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications, 5, 3706.
Kocsis, E., Trus, B.L., Steer, C.J., Bisher, M.E. & Steven, A.C. (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. Journal of Structural Biology, 107, 6-14.
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R. et al. (2009) Circos: an in- formation aesthetic for comparative genomics. Genome Research, 19, 1639-1645.
Li, A., Liu, D., Yang, W., Kishii, M. & Mao, L. (2018) Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 4, 552-558.
Li, H., Hu, X., Lovell, J.T., Grabowski, P.P., Mamidi, S. et al. (2021) Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping. Plant Genome, 14, e20110.
Luo, Z., Brock, J., Dyer, J.M., Kutchan, T., Schachtman, D. et al. (2019) Genetic diversity and population structure of a Camelina sativa spring panel. Frontiers in Plant Science, 10, 184.
Lysak, M.A., Mandáková, T. & Schranz, M.E. (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology, 30, 108-115.
Mandáková, T. & Lysak, M.A. (2016a) Chromosome preparation for cytogenetic analyses in Arabidopsis. Current Protocols in Plant Biology, 1, 43-51.
Mandáková, T. & Lysak, M.A. (2016b) Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Current Protocols in Plant Biology, 1, 359-371.
Mandáková, T., Pouch, M., Brock, J.R., Al-Shehbaz, I.A. & Lysak, M.A. (2019) Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell, 31, 2596-2612.
Martin, S.L., Smith, T.W., James, T., Shalabi, F., Kron, P. & Sauder, C.A. (2017) An update to the Canadian range, abundance, and ploidy of Camelina spp. (Brassicaceae) east of the Rocky Mountains. Botany, 95, 405-417.
Moser, B.R. (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope? Lipid Technology, 22, 270-273.
Mosyakin, S.L. & Brock, J.R. (2021) On the proper type designation for Camelina microcarpa, a wild relative and progenitor of the crop species C. sativa (Brassicaceae). Candollea, 76, 55-63.
Obour, K.A., Sintim, Y.H., Obeng, E. & Jeliazkov, D.V. (2015) Oilseed camelina (Camelina sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains. Advances in Plants & Agriculture Research, 2, 00043.
Shonnard, D.R., Williams, L. & Kalnes, T.M. (2010) Camelina - derived jet fuel and diesel: sustainable advanced biofuels. Environmental Progress & Sustainable Energy, 29, 382-392.
Vollmann, J. & Eynck, C. (2015) Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering. Biotechnology Journal, 10, 525-535.
Warwick, S.I. & Al-Shehbaz, I.A. (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Systematics and Evolution, 259, 237-248.