• This record comes from PubMed

Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels

. 2022 Jan 03 ; 15 (1) : 1. [epub] 20220103

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 34980194
PubMed Central PMC8721997
DOI 10.1186/s13041-021-00891-7
PII: 10.1186/s13041-021-00891-7
Knihovny.cz E-resources

Low-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and peripheral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins (SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid mutations within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma membrane.

See more in PubMed

Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal. 2021;5(1):NS20200095. doi: 10.1042/NS20200095. PubMed DOI PMC

Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–39. doi: 10.1016/j.biocel.2019.01.008. PubMed DOI

Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57(1):1–10. doi: 10.1136/jmedgenet-2019-106163. PubMed DOI PMC

Castle A, Castle D. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci. 2005;118(Pt 16):3769–3780. doi: 10.1242/jcs.02503. PubMed DOI

Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D. The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell. 2000;11(9):2933–2947. doi: 10.1091/mbc.11.9.2933. PubMed DOI PMC

Guo Z, Liu L, Cafiso D, Castle D. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem. 2002;277(38):35357–35363. doi: 10.1074/jbc.M202259200. PubMed DOI

Müller HK, Wiborg O, Haase J. Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem. 2006;281(39):28901–28909. doi: 10.1074/jbc.M602848200. PubMed DOI

Diering GH, Church J, Numata M. Secretory carrier membrane protein 2 regulates cell-surface targeting of brain-enriched Na+/H+ exchanger NHE5. J Biol Chem. 2009;284(20):13892–13903. doi: 10.1074/jbc.M807055200. PubMed DOI PMC

Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem. 2011;286(11):9489–9502. doi: 10.1074/jbc.M110.166546. PubMed DOI PMC

Fjorback AW, Müller HK, Haase J, Raarup MK, Wiborg O. Modulation of the dopamine transporter by interaction with Secretory Carrier Membrane Protein 2. Biochem Biophys Res Commun. 2011;406(2):165–170. doi: 10.1016/j.bbrc.2011.01.069. PubMed DOI

Liu L, Guo Z, Tieu Q, Castle A, Castle D. Role of secretory carrier membrane protein SCAMP2 in granule exocytosis. Mol Biol Cell. 2002;13(12):4266–4278. doi: 10.1091/mbc.e02-03-0136. PubMed DOI PMC

Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol. 2010;298(6):C1353–C1362. doi: 10.1152/ajpcell.00235.2009. PubMed DOI

García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83(5):1144–1158. doi: 10.1016/j.neuron.2014.07.036. PubMed DOI

Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N. A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin) 2016;10(5):346–354. doi: 10.1080/19336950.2016.1186318. PubMed DOI PMC

Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, et al. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Sci Rep. 2017;7(1):11513. doi: 10.1038/s41598-017-11591-5. PubMed DOI PMC

Gandini MA, Souza IA, Khullar A, Gambeta E, Zamponi GW. Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch. 2021 PubMed

Yue C, Xie S, Zhong J, Zhao H, Lin Z, Zhang L, et al. SCAMP2/5 as diagnostic and prognostic markers for acute myeloid leukemia. Sci Rep. 2021;11(1):17012. doi: 10.1038/s41598-021-96440-2. PubMed DOI PMC

Cai S, Gomez K, Moutal A, Khanna R. Targeting T-type/CaV3.2 channels for chronic pain. Transl Res. 2021;234:20–30. doi: 10.1016/j.trsl.2021.01.002. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...