Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34980194
PubMed Central
PMC8721997
DOI
10.1186/s13041-021-00891-7
PII: 10.1186/s13041-021-00891-7
Knihovny.cz E-resources
- Keywords
- Calcium channels, Cav3.2 channels, Ion channels, SCAMP2, Secretory carrier-associated membrane protein 2, T-type channels, Trafficking,
- MeSH
- Cell Membrane metabolism MeSH
- Membrane Proteins metabolism MeSH
- Neurons metabolism MeSH
- Mammals metabolism MeSH
- Carrier Proteins metabolism MeSH
- Calcium metabolism MeSH
- Calcium Channels, T-Type * metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Membrane Proteins MeSH
- Carrier Proteins MeSH
- Calcium MeSH
- Calcium Channels, T-Type * MeSH
Low-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and peripheral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins (SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid mutations within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma membrane.
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal. 2021;5(1):NS20200095. doi: 10.1042/NS20200095. PubMed DOI PMC
Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–39. doi: 10.1016/j.biocel.2019.01.008. PubMed DOI
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet. 2020;57(1):1–10. doi: 10.1136/jmedgenet-2019-106163. PubMed DOI PMC
Castle A, Castle D. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci. 2005;118(Pt 16):3769–3780. doi: 10.1242/jcs.02503. PubMed DOI
Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D. The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell. 2000;11(9):2933–2947. doi: 10.1091/mbc.11.9.2933. PubMed DOI PMC
Guo Z, Liu L, Cafiso D, Castle D. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem. 2002;277(38):35357–35363. doi: 10.1074/jbc.M202259200. PubMed DOI
Müller HK, Wiborg O, Haase J. Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem. 2006;281(39):28901–28909. doi: 10.1074/jbc.M602848200. PubMed DOI
Diering GH, Church J, Numata M. Secretory carrier membrane protein 2 regulates cell-surface targeting of brain-enriched Na+/H+ exchanger NHE5. J Biol Chem. 2009;284(20):13892–13903. doi: 10.1074/jbc.M807055200. PubMed DOI PMC
Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem. 2011;286(11):9489–9502. doi: 10.1074/jbc.M110.166546. PubMed DOI PMC
Fjorback AW, Müller HK, Haase J, Raarup MK, Wiborg O. Modulation of the dopamine transporter by interaction with Secretory Carrier Membrane Protein 2. Biochem Biophys Res Commun. 2011;406(2):165–170. doi: 10.1016/j.bbrc.2011.01.069. PubMed DOI
Liu L, Guo Z, Tieu Q, Castle A, Castle D. Role of secretory carrier membrane protein SCAMP2 in granule exocytosis. Mol Biol Cell. 2002;13(12):4266–4278. doi: 10.1091/mbc.e02-03-0136. PubMed DOI PMC
Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES. T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol. 2010;298(6):C1353–C1362. doi: 10.1152/ajpcell.00235.2009. PubMed DOI
García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83(5):1144–1158. doi: 10.1016/j.neuron.2014.07.036. PubMed DOI
Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N. A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin) 2016;10(5):346–354. doi: 10.1080/19336950.2016.1186318. PubMed DOI PMC
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, et al. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Sci Rep. 2017;7(1):11513. doi: 10.1038/s41598-017-11591-5. PubMed DOI PMC
Gandini MA, Souza IA, Khullar A, Gambeta E, Zamponi GW. Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch. 2021 PubMed
Yue C, Xie S, Zhong J, Zhao H, Lin Z, Zhang L, et al. SCAMP2/5 as diagnostic and prognostic markers for acute myeloid leukemia. Sci Rep. 2021;11(1):17012. doi: 10.1038/s41598-021-96440-2. PubMed DOI PMC
Cai S, Gomez K, Moutal A, Khanna R. Targeting T-type/CaV3.2 channels for chronic pain. Transl Res. 2021;234:20–30. doi: 10.1016/j.trsl.2021.01.002. PubMed DOI PMC
The T-type calcium channelosome