Dissipative particle dynamics as a computational tool to detect the morphology-rheology interplay in Pluronic F68/water mixtures: A promising drug carrier
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40768981
DOI
10.1016/j.jcis.2025.138525
PII: S0021-9797(25)01916-2
Knihovny.cz E-zdroje
- Klíčová slova
- Dissipative particle dynamics, Drug delivery systems, Pluronics, Rheology, Self-assembly,
- MeSH
- maloúhlový rozptyl MeSH
- nosiče léků * chemie MeSH
- poloxamer * chemie MeSH
- povrchové vlastnosti MeSH
- reologie MeSH
- teplota MeSH
- velikost částic MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nosiče léků * MeSH
- poloxamer * MeSH
- voda * MeSH
Pluronics, also known as poloxamers, are amphiphilic triblock copolymers widely employed in drug delivery systems due to their tunable self-assembly and biocompatibility. Among them, Pluronic F68 (Poloxamer 188) exhibits thermoresponsive behavior in aqueous solution, forming ordered supramolecular structures at high concentrations and temperatures. In this work, we investigate the morphological and rheological properties of a 45 wt% Pluronic F68 aqueous system at different temperatures through a combination of experimental and computational approaches. Rheological measurements and Small-Angle X-ray Scattering (SAXS) confirm the formation of a body-centered cubic (BCC) structure at higher temperatures and highlight the emergence of viscoelastic solid-like behavior. To support and extend these findings, Dissipative Particle Dynamics (DPD) simulations are employed to model the nanostructure evolution and the impact of temperature on self-assembly and material properties. This integrated approach provides a consistent framework to characterize the temperature-induced transition from fluid-like to solid-like states and sets the groundwork for future simulation studies incorporating drug cargo. The results offer valuable insights into the design of thermoresponsive drug delivery systems and demonstrate the potential of DPD in capturing complex structure-property relationships in amphiphilic polymer systems.
Citace poskytuje Crossref.org