Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL

. 2022 Mar 23 ; 23 (1) : 228. [epub] 20220323

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35321662
Odkazy

PubMed 35321662
PubMed Central PMC8944066
DOI 10.1186/s12864-022-08433-8
PII: 10.1186/s12864-022-08433-8
Knihovny.cz E-zdroje

BACKGROUND: The tall wheatgrass species Thinopyrum elongatum carries a strong fusarium head blight (FHB) resistance locus located on the long arm of chromosome 7 (7EL) as well as resistance to leaf and stem rusts, all diseases with a significant impact on wheat production. Towards understanding the contribution of Th. elongatum 7EL to improvement of disease resistance in wheat, the genomic sequence of the 7EL fragment present in the wheat Chinese Spring (CS) telosomic addition line CS-7EL was determined and the contribution and impact of 7EL on the rachis transcriptome during FHB infection was compared between CS and CS-7EL. RESULTS: We assembled the Th. elongatum 7EL chromosome arm using a reference-guided approach. Combining this assembly with the available reference sequence for CS hexaploid wheat provided a reliable reference for interrogating the transcriptomic differences in response to infection conferred by the 7EL fragment. Comparison of the transcriptomes of rachis tissues from CS and CS-7EL showed expression of Th. elongatum transcripts as well as modulation of wheat transcript expression profiles in the CS-7EL line. Expression profiles at 4 days after infection with Fusarium graminearum, the causal agent of FHB, showed an increased in expression of genes associated with an effective defense response, in particular glucan endo-1,3-beta-glucosidases and chitinases, in the FHB-resistant line CS-7EL while there was a larger increase in differential expression for genes associated with the level of fungal infection in the FHB-susceptible line CS. One hundred and seven 7EL transcripts were expressed in the smallest 7EL region defined to carry FHB resistance. CONCLUSION: 7EL contributed to CS-7EL transcriptome by direct expression and through alteration of wheat transcript profiles. FHB resistance in CS-7EL was associated with transcriptome changes suggesting a more effective defense response. A list of candidate genes for the FHB resistance locus on 7EL has been established.

Zobrazit více v PubMed

De Boevre M, Di Mavungu JD, Landschoot S, Audenaert K, Eeckhout M, Maene P, Haesaert G, De Saeger S. Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J. 2012;5:207–219. doi: 10.3920/WMJ2012.1410. DOI

Buerstmayr H, Buerstmayr M, Schweiger W, Steiner B. Breeding for resistance to head blight caused by Fusarium spp. in wheat. CAB Rev. 2014;9:1–13. doi: 10.1079/PAVSNNR20149007. DOI

Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol. 2017;42:165–174. doi: 10.1007/s40858-017-0127-7. DOI

Khan MK, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A, Atmaca E, Santos PA, et al. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech. 2020;10:172. doi: 10.1007/s13205-020-2158-x. PubMed DOI PMC

Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 2009;128:1–26. doi: 10.1111/j.1439-0523.2008.01550.x. DOI

Han FP, Fedak G. Molecular characterization of partial amphiploids from Triticum durum x tetraploid Thinopyrum elongatum as novel source of resistance to wheat Fusarium head blight. In: Pogna NE, et al., editors. Proc. 10th International Wheat Genetics Symposium. Paestum; 2003. p. 1148–50.

Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)- Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet. 2004;108:808–813. doi: 10.1007/s00122-003-1492-9. PubMed DOI

Shen X, Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed. 2006;125:424–429. doi: 10.1111/j.1439-0523.2006.01274.x. DOI

Miller SS, Watson EM, Lazebnik J, Gulden S, Balcerzak M, Fedak G, Ouellet T. Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese spring wheat. Botany. 2011;89:301–311. doi: 10.1139/B11-017. DOI

Friebe B, Jiang J, Knott DR, Gill BS. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994;34:400–404. doi: 10.2135/cropsci1994.0011183X003400020018x. DOI

Friebe B, Jiang J, Raupp WJ, Mclntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. DOI

McIntosh RA, Dyck PL, Green GJ. Inheritance of leaf rust and stem rust resistances in wheat cultivars agent and Agatha. Aust J Agric Res. 1977;1077(28):37–45. doi: 10.1071/AR9770037. DOI

Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theor Appl Genet. 2002;104:1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI

Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010;17:1519–1533. doi: 10.1089/cmb.2009.0238. PubMed DOI PMC

Dvořák J, Knott D. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol. 1974;16:399–417. doi: 10.1139/g74-043. DOI

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017;35(3):543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC

IWGSC RefSeq v1.0 Reference Genome Assemblies. https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/. Accessed 17 Jan 2018.

URGI/download/iwgsc/Survey_sequence/Survey_v3, https://urgi.versailles.inra.fr/download/iwgsc/Survey_sequence/Survey_v3/.

Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 2020;368(6493):eaba5435. doi: 10.1126/science.aba5435. PubMed DOI

National Center for Biotechnology Information, Thinopyrum elongatum GenBank assembly GCA_011799875.1 Nucleotide BLAST. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=blastn&BLAST_SPEC=Assembly&ASSEMBLY_NAME=GCA_011799875.1. Accessed 8 Apr 2021.

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 2019;20(1):224. doi: 10.1186/s13059-019-1829-6. PubMed DOI PMC

Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang YG, Liu S. Triticum population sequencing provides insights into wheat adaptation. Nat Genet. 2020;52(12):1412–1422. doi: 10.1038/s41588-020-00722-w. PubMed DOI

Guo JC, Fang SS, Wu Y, Zhang JH, Chen Y, Liu J, Wu B, Wu JR, Li EM, Xu LY, Sun L, Zhao Y. CNIT: a fast and accurate web tool for identifying protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic Acids Res. 2019;47(W1):W516–W522. doi: 10.1093/nar/gkz400. PubMed DOI PMC

Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–W16. doi: 10.1093/nar/gkx428. PubMed DOI PMC

Ceoloni C, Forte P, Kuzmanović L, Tundo S, Moscetti I, De Vita P, Virili ME, D’Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. Ponticum homoeologous arm onto bread wheat 7DL. Theor Appl Genet. 2017;130:2005–2024. doi: 10.1007/s00122-017-2939-8. PubMed DOI

Haldar A. Characterizing differentially expressed genes from the Thinopyrum elongatum 7EL chromosome region that is responsible for FHB resistance, after introgression in Triticum aestivum. Dissertation, University of Ottawa; 2019.

Rey E, Abrouk M, Keeble-Gagnère G, Karafiátová M, Vrána J, Balzergue S, Soubigou-Taconnat L, Brunaud V, Martin-Magniette ML, Endo TR, Bartoš J, IWGSC, Appels R, Doležel J. Transcriptome reprograming due to the introduction of a barley telosome into bread what affects more barley genes than wheat. Plant Biotechnol J. 2018;16:1767–1777. doi: 10.1111/pbi.12913. PubMed DOI PMC

Dong Z, Ma C, Tian X, Zhu C, Wang G, Lv Y, Friebe B, Li H, Liu W. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Sci Rep. 2020;10:4801. doi: 10.1038/s41598-020-61888-1. PubMed DOI PMC

Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001;13:1749–1759. doi: 10.1105/TPC.010083. PubMed DOI PMC

Kashkush K, Feldman M, Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002;160(4):1651–1659. doi: 10.1093/genetics/160.4.1651. PubMed DOI PMC

Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet. 2003;33:102–106. doi: 10.1038/ng1063. PubMed DOI

Liu S, Li F, Kong L, Sun Y, Qin L, Chen S, Cui H, Huang Y, Xia G. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics. 2015;199:1035–1045. doi: 10.1534/genetics.114.174094. PubMed DOI PMC

Sun X, Zheng H, Sui N. Regulation mechanism of long non-coding RNA in plant response to stress. Biochem Biophys Res Commun. 2018;503:402–407. doi: 10.1016/j.bbrc.2018.07.072. PubMed DOI

Budak H, Kaya SB, Cagirici HB. Long non-coding RNA in plants in the era of reference sequences. Front Plant Sci. 2020;11:276. doi: 10.3389/fpls.2020.00276. PubMed DOI PMC

Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11:61. doi: 10.1186/1471-2229-11-61. PubMed DOI PMC

Li SH, Dudler R, Ji R, Yong ML, Wang ZY, Hu DW. Long non-coding RNAs in wheat are related to its susceptibility to powdery mildew. Biol Plant. 2014;58:296–304. doi: 10.1007/s10535-014-0404-y. DOI

Cagirici HB, Alptekin B, Budak H. RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. Sci Rep. 2017;7:10670. doi: 10.1038/s41598-017-11170-8. PubMed DOI PMC

Hu W, Wang G, Wang S, Nie X, Wang C, Wang Y, Zhang H, Ji W. Co-regulation of long non-coding RNAs with allele-specific genes in wheat responding to powdery mildew infection. Agronomy. 2020;10:896. doi: 10.3390/agronomy10060896. DOI

Huang D, Feurtado JA, Smith MA, Flatman LK, Koh C, Cutler AJ. Long noncoding miRNA gene represses wheat β-diketone waxes. Proc Natl Acad Sci. 2017;114:E3149–E3158. doi: 10.1073/pnas.1617483114. PubMed DOI PMC

Huang Y, Li L, Smith KP, Muehlbauer GJ. Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genomics. 2016;17:387. doi: 10.1186/s12864-016-2716-0. PubMed DOI PMC

Kazan K, Gardiner DM. Transcriptomics of cereal–Fusarium graminearum interactions: what we have learned so far. Molec Plant Pathol. 2018;19:764–778. doi: 10.1111/mpp.12561. PubMed DOI PMC

Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet. 2020;133:1541–1568. doi: 10.1007/s00122-019-03525-8. PubMed DOI

Balasubramaniam V, Vashisht D, Cletus J, Sakthivel N. Plant ß-1,3-glucanases: biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett. 2012;34:1983–1990. doi: 10.1007/s10529-012-1012-6. PubMed DOI

Li WL, Faris JD, Muthukrishnan S, Liu DJ, Chen PD, Gill BS. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet. 2001;102:353–362. doi: 10.1007/s001220051653. DOI

Francesconi S, Balestra GM. The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. PLoS One. 2020;15:e0235482. doi: 10.1371/journal.pone.0235482. PubMed DOI PMC

Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep. 2007;26:479–488. doi: 10.1007/s00299-006-0265-8. PubMed DOI PMC

Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ. Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot. 2008;59:2371–2378. doi: 10.1093/jxb/ern103. PubMed DOI PMC

Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q, Wang X. Transcriptome-based discovery of pathways and genes related to resistance against fusarium head blight in wheat landrace Wangshuibai. BMC Genomics. 2013;14:197. doi: 10.1186/1471-2164-14-197. PubMed DOI PMC

Biselli C, Bagnaresi P, Facioli P, Balcerzak M, Mattera MG, Yan Z, Ouellet T, Cattivelli L, Valè G. Comparative transcriptome profiles of near-isogenic hexaploid lines differing for effective alleles at the 2DL FHB resistance QTL. Front Plant Sci. 2018;9:37. doi: 10.3389/fpls.2018.00037. PubMed DOI PMC

Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics. 2018;19:642. doi: 10.1186/s12864-018-5012-3. PubMed DOI PMC

Wang L, Li Q, Liu Z, Surendra A, Pan Y, Li Y, Zaharia LI, Ouellet T, Fobert PR. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. PLoS One. 2018;13:e0207036. doi: 10.1371/journal.pone.0207036. PubMed DOI PMC

Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. Plant J. 2011;66:194–211. doi: 10.1111/j.1365-313X.2011.04529.x. PubMed DOI

Gunupuru LR, Arunachalam C, Malla KB, Kahla A, Perochon A, Jia J, Thapa G, Doohan FM. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS One. 2018;13:e0204992. doi: 10.1371/journal.pone.0204992. PubMed DOI PMC

Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol. 2013;161:1433–1444. doi: 10.1104/pp.112.211011. PubMed DOI PMC

Krattinger SG, Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016;212:320–332. doi: 10.1111/nph.14097. PubMed DOI

Ding Y, Murphy KM, Poretsky E, Mafu S, Yang B, Char SN, Christensen SA, Saldivar E, Wu M, Wang Q, Ji L, Schmitz RJ, Kremling KA, Buckler ES, Shen Z, Briggs SP, Bohlmann J, Sher A, Castro-Falcon G, Hughes CC, Huffaker A, ZerbeP SEA. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nat Plants. 2019;5:1043–1056. doi: 10.1038/s41477-019-0509-6. PubMed DOI

Bolus S, Akhunov E, Coaker G, Dubcovsky Dissection of cell death induction by wheat stem rust resistance protein Sr35 and its matching effector AvrSr35. Molec Plant Microbes Interact. 2020;33:308–319. doi: 10.1094/MPMI-08-19-0216-R. PubMed DOI PMC

Guo J, Zhang X, Hou X, Cai J, Shen X, Zhou T, Xu H, Ohm HW, Wang H, Li A, Han F, Wang H, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet. 2015;128:2301–2316. doi: 10.1007/s00122-015-2586-x. PubMed DOI

Wang JR, Wang L, Gulden S, Rocheleau H, Balcerzak M, Hattori J, Cao W, Han F, Zheng YL, Fedak G, Ouellet T. RNA profiling of fusarium head blight-resistant wheat addition lines containing the Thinopyrum elongatum chromosome 7E. Can J Plant Pathol. 2010;32:188–214. doi: 10.1080/07060661003740512. DOI

Ma P, Han G, Zheng Q, Liu S, Han F, Wang J, Luo Q, An D. Development of novel wheat-rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Dis. 2020;104:260–268. doi: 10.1094/PDIS-01-19-0160-RE. PubMed DOI

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC

Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC

Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, SharpeAG PIAP. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun. 2014;5:3706. doi: 10.1038/ncomms4706. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One. 2012;7(12):e52249. doi: 10.1371/journal.pone.0052249. PubMed DOI PMC

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Šafář J, Doležel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345(6194):1249721. doi: 10.1126/science.1249721. PubMed DOI

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1(1):18. doi: 10.1186/2047-217x-1-18. PubMed DOI PMC

Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Computational Bbiol. 2018;14(1):e1005944. doi: 10.1371/journal.pcbi.1005944. PubMed DOI PMC

Nattestad M, Schatz MC. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics. 2016;32(19):3021. doi: 10.1093/bioinformatics/btw369. PubMed DOI PMC

Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, Bähler J, Sedlazeck FJ. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8(1):1. doi: 10.1038/ncomms14061. PubMed DOI PMC

Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2020. 10.1093/bioinformatics/btaa1016. PubMed PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Gou L, Hattori J, Fedak G, Balcerzak M, Sharpe A, Visendi P, Edwards D, Tinker N, Wei YM, Chen GY, Ouellet T. Development and validation of Thinopyrum elongatum–expressed molecular markers specific for the long arm of chromosome 7E. Crop Sci. 2016;56(1):354. doi: 10.2135/cropsci2015.03.0184. DOI

Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium head blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics. 2016;17:1014. doi: 10.1186/s12864-016-3371-1. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC

Anders S, Pyl PT, Huber W. HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.

National Center for Biotechnology Information, Translated BLAST:BLASTX. https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome. Last access in May 2020.

The Arabidopsis Information Resource, BLASTX. https://www.arabidopsis.org/Blast/index.jsp. Accessed 12 May 2020.

Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2.40.0. 2020.

Integrated DNA technologies, OligoAnalyser Tool. https://www.idtdna.com/pages/tools/oligoanalyzer. Accessed 16 Aug 2018.

National Center for Biotechnology Information, Sequencing of a Chinese spring wheat with 7EL addition from Thinopyrum elongatum, BioProject PRJNA450404. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA450404. Accessed 12 May 2020.

National Center for Biotechnology Information, Gene Expression Omnibus accession GSE70797 (https://www.ncbi.nlm.nih.gov/search/all/?term=GSE70797).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...