Neurological software tool for reliable atrophy measurement (NeuroSTREAM) of the lateral ventricles on clinical-quality T2-FLAIR MRI scans in multiple sclerosis
Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
UL1 TR001412
NCATS NIH HHS - United States
PubMed
28706852
PubMed Central
PMC5496213
DOI
10.1016/j.nicl.2017.06.022
PII: S2213-1582(17)30153-5
Knihovny.cz E-zdroje
- Klíčová slova
- Automated measurement, Brain atrophy, Multiple sclerosis, Ventricular volume,
- MeSH
- atrofie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- průřezové studie MeSH
- radioisotopová scintigrafie MeSH
- reprodukovatelnost výsledků MeSH
- roztroušená skleróza diagnostické zobrazování patologie MeSH
- software MeSH
- ventriculi laterales patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: There is a need for a brain volume measure applicable to the clinical routine scans. Nearly every multiple sclerosis (MS) protocol includes low-resolution 2D T2-FLAIR imaging. OBJECTIVES: To develop and validate cross-sectional and longitudinal brain atrophy measures on clinical-quality T2-FLAIR images in MS patients. METHODS: A real-world dataset from 109 MS patients from 62 MRI scanners was used to develop a lateral ventricular volume (LVV) algorithm with a longitudinal Jacobian-based extension, called NeuroSTREAM. Gold-standard LVV was calculated on high-resolution T1 1 mm, while NeuroSTREAM LVV was obtained on low-resolution T2-FLAIR 3 mm thick images. Scan-rescan reliability was assessed in 5 subjects. The variability of LVV measurement at different field strengths was tested in 76 healthy controls and 125 MS patients who obtained both 1.5T and 3T scans in 72 hours. Clinical validation of algorithm was performed in 176 MS patients who obtained serial yearly MRI 1.5T scans for 10 years. RESULTS: Correlation between gold-standard high-resolution T1 LVV and low-resolution T2-FLAIR LVV was r = 0.99, p < 0.001 and the scan-rescan coefficient of variation was 0.84%. Correlation between low-resolution T2-FLAIR LVV on 1.5T and 3T was r = 0.99, p < 0.001 and the scan-rescan coefficient of variation was 2.69% cross-sectionally and 2.08% via Jacobian integration. NeuroSTREAM showed comparable effect size (d = 0.39-0.71) in separating MS patients with and without confirmed disability progression, compared to SIENA and VIENA. CONCLUSIONS: Brain atrophy measurement on clinical quality T2-FLAIR scans is feasible, accurate, reliable, and relates to clinical outcomes.
Zobrazit více v PubMed
Aljabar P. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage. 2009;46(3):726–738. PubMed
Ashburner J., Friston K. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6):805–821. PubMed
Avants B.B. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008;12(1):26–41. PubMed PMC
Avants B. An open source multivariate framework for N-tissue segmentation with evaluation on public data. Neuroinformatics. 2011;9(4):381–400. PubMed PMC
Avants B. Medical Image Computing and Computer-assisted Intervention: MICCAI … International Conference on Medical Image Computing and Computer-Assisted Intervention. 15(Pt 3) 2012. Eigenanatomy improves detection power for longitudinal cortical change; pp. 206–213. PubMed PMC
Baillard C., Hellier P., Barillot C. Segmentation of brain 3D MR images using level sets and dense registration. Med. Image Anal. 2001;5(3):185–194. PubMed
Barra V., Boire J. Automatic segmentation of subcortical brain structures in MR images using information fusion. IEEE Trans. Med. Imaging. 2001;20(7):549–558. PubMed
Benedict R.H.B.R. Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch. Neurol. 2006;63(9):1301–1306. PubMed
Caramanos Z. Gradient distortions in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. NeuroImage. 2010;49(2):1601–1611. PubMed
Chu R. 2016. Whole brain volume measured from 1.5 T versus 3T MRI in healthy subjects and patients with multiple sclerosis. (Journal of) PubMed PMC
Collins D.L. Automatic 3-D model-based neuroanatomical segmentation. Hum. Brain Mapp. 1995;208(3):190–208.
Coupé P. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage. 2011;54(2):940–954. PubMed
Dalton C., Chard D., Davies G. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain. 2004 PubMed
De Stefano N. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014;28(2):147–156. PubMed
Fisniku L.K. Gray matter atrophy is related to long term disability in multiple sclerosis. Ann. Neurol. 2008;64(3):247–254. PubMed
Freeborough P.A., Fox N.C. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans. Med. Imaging. 1997;16(5):623–629. PubMed
Gorgolewski K. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 2011;5:13. PubMed PMC
Havrdova E. Randomized study of interferon beta-1a, low-dose azathioprine, and low-dose corticosteroids in multiple sclerosis. Mult. Scler. 2009;15(8):965–976. (Houndmills, Basingstoke, England) PubMed
Heckemann R.A. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage. 2006;33(1):115–126. PubMed
Heimann T., Meinzer H. Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 2009 PubMed
Julazadeh A. International Conference on Information Science. IEEE. 2012. A novel automated approach for segmenting lateral ventricle in MR images of the brain using sparse representation classification and dictionary learning; pp. 888–893.
Kalkers N.F. Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch. Neurol. 2002;59(10):1572–1576. PubMed
Kempton M.J. A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: evaluation of a novel lateral ventricle segmentation method. NeuroImage. 2011;58(4):1051–1059. PubMed PMC
Lladó X. Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology. 2011 PubMed
Lukas C., Minneboo A., Groot V. De. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J. Neurol. 2010 PubMed
Miller D.H. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain J. Neurol. 2002;125(Pt 8):1676–1695. PubMed
Murray T.J. 1st ed. Demos Medical Publishing; New York: 2005. Multiple Sclerosis: The History of a Disease.
Nakamura K. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. NeuroImage: Clinical. 2014;4:10–17. PubMed PMC
Patenaude B. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage. 2011;56(3):907–922. PubMed PMC
Pedregosa F. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 2011;12:2825–2830.
Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990;12(7):629–639.
Popescu V. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2013;84(10):1082–1091. PubMed
Rifai H. Segmentation of the skull in MRI volumes using deformable model and taking the partial volume effect into account. Med. Image Anal. 2000;4(3):219–233. PubMed
Sanfilipo M. Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage. 2004 PubMed
Santos R., Weinstock-Guttman B. 2006. Dynamics of interferon-β modulated mRNA biomarkers in multiple sclerosis patients with anti-interferon-β neutralizing antibodies. (Journal of) PubMed
Simon J.H. Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am. J. Neuroradiol. 2006;27(2):455–461. PubMed PMC
Smith S. Normalized accurate measurement of longitudinal brain change. J. Comput. 2001;25(3):466–475. PubMed
Smith S.M. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17(1):479–489. PubMed
Summers M. Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J. Neurol. Neurosurg. Psychiatry. 2008;79(8):955–958. PubMed
Tustison N., Avants B. N4ITK: improved N3 bias correction. Med. Imaging. 2010;29(6):1310–1320. PubMed PMC
Uher T. Longitudinal MRI and neuropsychological assessment of patients with clinically isolated syndrome. J. Neurol. 2014;261(9):1735–1744. PubMed
Uher T., Horakova D., Kalincik T. 2015. Early magnetic resonance imaging predictors of clinical progression after 48 months in clinically isolated syndrome patients treated with intramuscular interferon β-1a. (European journal of) PubMed
Vrenken H. Validation of the automated method VIENA: an accurate, precise, and robust measure of ventricular enlargement. Hum. Brain Mapp. 2014;35(4):1101–1110. PubMed PMC
Wang H., Yushkevich P.A. Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front. Neuroinform. 2013;7:27. PubMed PMC
Wilcox R., Wilcox R. Encyclopedia of Biostatistics. John Wiley & Sons, Ltd.; Chichester, UK: 2005. Trimming and Winsorization.
Xia Y. A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages. NeuroImage. 2004;21(1):269–282. PubMed
Yushkevich P.A. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–1128. PubMed
Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging. 2001;20(1):45–57. PubMed
Zivadinov R., Ramasamy D. Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology. 2016 PubMed
Zivadinov R., Uher T., Hagemeier J. A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult. Scler. 2016 PubMed
Zivadinov R. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert. Rev. Neurother. 2016;16(7):777–793. PubMed
Zivadinov R., Khan N., Medin J. An observational study to assess brain MRI change and disease progression in multiple sclerosis clinical practice—the MS‐MRIUS study. J. Neuroimaging. 2017;27(3):339–347. PubMed PMC