Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- býložravci MeSH
- chromozomy rostlin MeSH
- DNA primery MeSH
- DNA rostlinná genetika MeSH
- genetická vazba MeSH
- genetické markery MeSH
- genomika MeSH
- jednonukleotidový polymorfismus MeSH
- mapování chromozomů * MeSH
- mikrosatelitní repetice MeSH
- mšice * MeSH
- pšenice genetika MeSH
- rostlinné geny * MeSH
- syntenie MeSH
- umělé bakteriální chromozomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
- Názvy látek
- DNA primery MeSH
- DNA rostlinná MeSH
- genetické markery MeSH
Making use of wheat chromosomal resources, we developed 11 gene-associated markers for the region of interest, which allowed reducing gene interval and spanning it by four BAC clones. Positional gene cloning and targeted marker development in bread wheat are hampered by high complexity and polyploidy of its nuclear genome. Aiming to clone a Russian wheat aphid resistance gene Dn2401 located on wheat chromosome arm 7DS, we have developed a strategy overcoming problems due to polyploidy and enabling efficient development of gene-associated markers from the region of interest. We employed information gathered by GenomeZipper, a synteny-based tool combining sequence data of rice, Brachypodium, sorghum and barley, and took advantage of a high-density linkage map of Aegilops tauschii. To ensure genome- and locus-specificity of markers, we made use of survey sequence assemblies of isolated wheat chromosomes 7A, 7B and 7D. Despite the low level of polymorphism of the wheat D subgenome, our approach allowed us to add in an efficient and cost-effective manner 11 new gene-associated markers in the Dn2401 region and narrow down the target interval to 0.83 cM. Screening 7DS-specific BAC library with the flanking markers revealed a contig of four BAC clones that span the Dn2401 region in wheat cultivar 'Chinese Spring'. With the availability of sequence assemblies and GenomeZippers for each of the wheat chromosome arms, the proposed strategy can be applied for focused marker development in any region of the wheat genome.
Zobrazit více v PubMed
Genetica. 2009 Jan;135(1):95-122 PubMed
Chromosome Res. 1999;7(6):431-44 PubMed
BMC Genomics. 2008 Jun 19;9:294 PubMed
Cytogenet Genome Res. 2010 Jul;129(1-3):211-23 PubMed
Plant Physiol. 2009 Oct;151(2):496-505 PubMed
Plant Cell. 2013 Oct;25(10):3685-98 PubMed
PLoS One. 2011;6(11):e27708 PubMed
Plant Cell. 2011 Apr;23(4):1249-63 PubMed
Theor Appl Genet. 2011 Jul;123(2):207-18 PubMed
Theor Appl Genet. 2006 Oct;113(6):1049-62 PubMed
J Biomed Biotechnol. 2011;2011:302543 PubMed
Methods Mol Biol. 2007;406:161-77 PubMed
Theor Appl Genet. 2002 May;104(6-7):1042-1048 PubMed
Genet Res. 2005 Apr;85(2):93-100 PubMed
Genome Res. 2003 Aug;13(8):1818-27 PubMed
Science. 2014 Jul 18;345(6194):1251788 PubMed
Theor Appl Genet. 2002 Jun;104(8):1362-1372 PubMed
Funct Integr Genomics. 2012 Aug;12(3):397-416 PubMed
Methods Mol Biol. 2000;132:365-86 PubMed
Theor Appl Genet. 2012 Feb;124(3):555-64 PubMed
Plant Biotechnol J. 2011 Sep;9(7):768-75 PubMed
Theor Appl Genet. 2007 Aug;115(4):451-61 PubMed
Theor Appl Genet. 2013 Apr;126(4):1077-101 PubMed
Genome. 2003 Oct;46(5):893-905 PubMed
J Econ Entomol. 2006 Apr;99(2):544-50 PubMed
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7940-5 PubMed
Plant Biotechnol J. 2013 Jun;11(5):564-71 PubMed
BMC Genomics. 2009 Dec 04;10:582 PubMed
Nat Biotechnol. 2012 Aug;30(8):771-6 PubMed
Funct Integr Genomics. 2013 Mar;13(1):19-32 PubMed
Funct Integr Genomics. 2009 Nov;9(4):473-84 PubMed
Mol Biol (Mosk). 2011 Jan-Feb;45(1):20-9 PubMed