Peripheral Deltorphin II Inhibits Nociceptors Following Nerve Injury
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
R01 DA009641
NIDA NIH HHS - United States
R01 DE021996
NIDCR NIH HHS - United States
R01 NS088518
NINDS NIH HHS - United States
PubMed
32848761
PubMed Central
PMC7411131
DOI
10.3389/fphar.2020.01151
Knihovny.cz E-resources
- Keywords
- delta opioid receptors, deltorphin II, neuropathic pain, nociceptors, spared nerve injury,
- Publication type
- Journal Article MeSH
Clinical and preclinical studies have revealed that local administration of opioid agonists into peripheral tissue attenuates inflammatory pain. However, few studies have examined whether peripherally restricted opioids are effective in reducing mechanical allodynia and hyperalgesia that usually follows nerve injury. The aim of the present study was to determine whether the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic pain conditions is depressed by direct activation of delta opioid receptors (DORs) on their peripheral terminals. A murine model of peripheral neuropathic pain was induced with a spared nerve (tibial) injury, in which mice survived 7 or 28 days after surgery before electrophysiological testing began. Control groups comprised naïve and sham-operated animals. An ex vivo preparation of mouse plantar skin with attached tibial nerve was used to examine electrophysiologically the effects of the selective DOR agonist, deltorphin II, on the response properties of individual cutaneous C-fiber nociceptors. In contrast to naïve and sham-operated animals, deltorphin II induced an inhibition of the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic conditions. The effects of deltorphin II were concentration-dependent and prevented by pretreatment with naltrindole indicating DOR-mediated inhibitory effects of deltorphin II. Our results provide the first direct evidence for expression of functional DORs on mechanical nociceptors innervating skin in an animal model of neuropathic pain.
See more in PubMed
Bai L., Wang X., Li Z., Kong C., Zhao Y., Qian J.-L., et al. (2016). Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci. Bull. 32, 27–40. 10.1007/s12264-015-0007-4 PubMed DOI PMC
Barber A., Gottschlich R. (1992). Opioid agonists and antagonists: An evaluation of their peripheral actions in inflammation. Med. Res. Rev. 12, 525–562. 10.1002/med.2610120505 PubMed DOI
Bian D., Ossipov M. H., Ibrahim M., Raffa R. B., Tallarida R. J., Malan T. P., et al. (1999). Loss of antiallodynic and antinociceptive spinal/supraspinal morphine synergy in nerve-injured rats: restoration by MK-801 or dynorphin antiserum. Brain Res. 831, 55–63. 10.1016/S0006-8993(99)01393-1 PubMed DOI
Brederson J.-D., Honda C. N. (2015). Primary afferent neurons express functional delta opioid receptors in inflamed skin. Brain Res. 1614, 105–111. 10.1016/j.brainres.2015.04.023 PubMed DOI PMC
Bretag A. H. (1969). Synthetic interstial fluid for isolated mammalian tissue. Life Sci. 8, 319–329. 10.1016/0024-3205(69)90283-5 PubMed DOI
Chaplan S. R., Bach F. W., Pogrel J. W., Chung J. M., Yaksh T. L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63. 10.1016/0165-0270(94)90144-9 PubMed DOI
Chaudhry V., Cornblath D. R. (1992). Wallerian degeneration in human nerves: Serial electrophysiological studies. Muscle Nerve 15, 687–693. 10.1002/mus.880150610 PubMed DOI
Coggeshall R. E., Zhou S., Carlton S. M. (1997). Opioid receptors on peripheral sensory axons. Brain Res. 764, 126–132. 10.1016/S0006-8993(97)00446-0 PubMed DOI
Decosterd I., Woolf C. J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158. 10.1016/S0304-3959(00)00276-1 PubMed DOI
Duraku L. S., Hossaini M., Hoendervangers S., Falke L. L., Kambiz S., Mudera V. C., et al. (2012). Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury. Mol. Pain 8, 61. 10.1186/1744-8069-8-61 PubMed DOI PMC
Duraku L. S., Hossaini M., Schüttenhelm B. N., Holstege J. C., Baas M., Ruigrok T. J. H., et al. (2013). Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp. Neurol. 241, 13–24. 10.1016/j.expneurol.2012.11.029 PubMed DOI
Ferreira S. H., Nakamura M. (1979). II - Prostaglandin hyperalgesia: The peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 18, 191–200. 10.1016/0090-6980(79)90104-7 PubMed DOI
Gold M. S., Gebhart G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257. 10.1038/nm.2235 PubMed DOI PMC
Guan Y., Johanek L. M., Hartke T. V., Shim B., Tao Y.-X., Ringkamp M., et al. (2008). Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. PAIN 138, 318–329. 10.1016/j.pain.2008.01.004 PubMed DOI PMC
Hassan A. H. S., Ableitner A., Stein C., Herz A. (1993). Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 55, 185–195. 10.1016/0306-4522(93)90465-R PubMed DOI
Jensen T. S., Gottrup H., Sindrup S. H., Bach F. W. (2001). The clinical picture of neuropathic pain. Eur. J. Pharmacol. 429, 1–11. 10.1016/S0014-2999(01)01302-4 PubMed DOI
Joris J. L., Dubner R., Hargreaves K. M. (1987). Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation? Anesth. Analg. 66, 1277–1281. 10.1213/00000539-198712000-00013 PubMed DOI
Joris J., Costello A., Dubner R., Hargreaves K. M. (1990). Opiates suppress carrageenan-induced edema and hyperthermia at doses that inhibit hyperalgesia. Pain 43, 95–103. 10.1016/0304-3959(90)90054-H PubMed DOI
Kabli N., Cahill C. M. (2007). Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain 127, 84–93. 10.1016/j.pain.2006.08.003 PubMed DOI
Klusáková I., Dubový P. (2009). Experimental models of peripheral neuropathic pain based on traumatic nerve injuries – An anatomical perspective. Ann. Anat. - Anat. Anz. 191, 248–259. 10.1016/j.aanat.2009.02.007 PubMed DOI
Kuner R., Flor H. (2017). Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30. 10.1038/nrn.2016.162 PubMed DOI
Leah J., Koschorke G., Welk E., Zimmermann M. (1988). “Chapter 41 The expression of sensory receptors on regenerating and regenerated cutaneous C fibres,” in Progress in Brain Research Transduction and Cellular Mechanisms in Sensory Receptors. Eds. Hamann W., Iggo A. (Amsterdam, The Netherlands: Elsevier; ), 341–348. 10.1016/S0079-6123(08)63035-6 PubMed DOI
Levine J. D., Taiwo Y. O. (1989). Involvement of the mu-opiate receptor in peripheral analgesia. Neuroscience 32, 571–575. 10.1016/0306-4522(89)90279-0 PubMed DOI
Meyer R. A., Davis K. D., Cohen R. H., Treede R.-D., Campbell J. N. (1991). Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res. 561, 252–261. 10.1016/0006-8993(91)91601-V PubMed DOI
Mousa S. A., Zhang Q., Sitte N., Ji R.-R., Stein C. (2001). β-Endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue. J. Neuroimmunol. 115, 71–78. 10.1016/S0165-5728(01)00271-5 PubMed DOI
Obara I., Przewlocki R., Przewlocka B. (2004). Local peripheral effects of μ-opioid receptor agonists in neuropathic pain in rats. Neurosci. Lett. 360, 85–89. 10.1016/j.neulet.2004.01.056 PubMed DOI
Obara I., Makuch W., Spetea M., Schütz J., Schmidhammer H., Przewlocki R., et al. (2007). Local peripheral antinociceptive effects of 14-O-methyloxymorphone derivatives in inflammatory and neuropathic pain in the rat. Eur. J. Pharmacol. 558, 60–67. 10.1016/j.ejphar.2006.11.037 PubMed DOI
Obara I., Parkitna J. R., Korostynski M., Makuch W., Kaminska D., Przewlocka B., et al. (2009). Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. PAIN 141, 283–291. 10.1016/j.pain.2008.12.006 PubMed DOI
Pertovaara A., Wei H. (2001). Peripheral effects of morphine in neuropathic rats: role of sympathetic postganglionic nerve fibers. Eur. J. Pharmacol. 429, 139–145. 10.1016/S0014-2999(01)01315-2 PubMed DOI
Portenoy R. K., Hagen N. A. (1990). Breakthrough pain: definition, prevalence and characteristics. Pain 41, 273–281. 10.1016/0304-3959(90)90004-W PubMed DOI
Przewłocki R., Przewłocka B. (2001). Opioids in chronic pain. Eur. J. Pharmacol. 429, 79–91. 10.1016/S0014-2999(01)01308-5 PubMed DOI
Reeh P. W. (1986). Sensory receptors in mammalian skin in an in vitro preparation. Neurosci. Lett. 66, 141–146. 10.1016/0304-3940(86)90180-1 PubMed DOI
Russell N. J. W., Schaible H.-G., Schmidt R. F. (1987). Opiates inhibit the discharges of fine afferent units from inflamed knee joint of the cat. Neurosci. Lett. 76, 107–112. 10.1016/0304-3940(87)90201-1 PubMed DOI
Schmidt Y., Labuz D., Heppenstall P. A., Machelska H. (2012). Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy. Mol. Pain 8, 81. 10.1186/1744-8069-8-81 PubMed DOI PMC
Scholz J., Woolf C. J. (2007). The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361–1368. 10.1038/nn1992 PubMed DOI
Shields S. D., Eckert W. A., Basbaum A., II (2003). Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J. Pain 4, 465–470. 10.1067/S1526-5900(03)00781-8 PubMed DOI
Skolnick P. (2018). The Opioid Epidemic: Crisis and Solutions. Annu. Rev. Pharmacol. Toxicol. 58, 143–159. 10.1146/annurev-pharmtox-010617-052534 PubMed DOI
Smith A. K., O’Hara C. L., Stucky C. L. (2013). Mechanical sensitization of cutaneous sensory fibers in the spared nerve injury mouse model. Mol. Pain 9, 61. 10.1186/1744-8069-9-61 PubMed DOI PMC
Stein C., Zöllner C. (2009). Opioids and sensory nerves. Handb. Exp. Pharmacol. 194, 495–518. 10.1007/978-3-540-79090-7_14 PubMed DOI
Stein C., Millan M. J., Yassouridis A., Herz A. (1988). Antinociceptive effects of μ- and κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur. J. Pharmacol. 155, 255–264. 10.1016/0014-2999(88)90511-0 PubMed DOI
Stein C., Millan M. J., Shippenberg T. S., Peter K., Herz A. (1989). Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J. Pharmacol. Exp. Ther. 248, 1269–1275. PubMed
Stein C. (2018). New concepts in opioid analgesia. Expert Opin. Investig. Drugs 27, 765–775. 10.1080/13543784.2018.1516204 PubMed DOI
Swett J. E., Woolf C. J. (1985). The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J. Comp. Neurol. 231, 66–77. 10.1002/cne.902310106 PubMed DOI
Truong W., Cheng C., Xu Q.-G., Li X.-Q., Zochodne D. W. (2003). μ Opioid receptors and analgesia at the site of a peripheral nerve injury. Ann. Neurol. 53, 366–375. 10.1002/ana.10465 PubMed DOI
Walker J., Catheline G., Guilbaud G., Kayser V. (1999). Lack of cross-tolerance between the antinociceptive effects of systemic morphine and asimadoline, a peripherally-selective κ-opioid agonist, in CCI-neuropathic rats. Pain 83, 509–516. 10.1016/S0304-3959(99)00158-X PubMed DOI
Wenk H. N., Honda C. N. (1999). Immunohistochemical localization of delta opioid receptors in peripheral tissues. J. Comp. Neurol. 408, 567–579. 10.1002/(SICI)1096-9861(19990614)408:4<567::AID-CNE10>3.0.CO;2-Q PubMed DOI
Wenk H. N., Brederson J.-D., Honda C. N. (2006). Morphine Directly Inhibits Nociceptors in Inflamed Skin. J. Neurophysiol. 95, 2083–2097. 10.1152/jn.00394.2005 PubMed DOI
Woolf C. J., Mannion R. J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964. 10.1016/S0140-6736(99)01307-0 PubMed DOI
Zhang X., Bao L., Shi T.-J., Ju G., Elde R., Hökfelt T. (1997). Down-regulation of μ-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy. Neuroscience 82, 223–240. 10.1016/S0306-4522(97)00240-6 PubMed DOI
Zimmermann M. (2001). Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37. 10.1016/S0014-2999(01)01303-6 PubMed DOI