• This record comes from PubMed

Peripheral Deltorphin II Inhibits Nociceptors Following Nerve Injury

. 2020 ; 11 () : 1151. [epub] 20200731

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Grant support
R01 DA009641 NIDA NIH HHS - United States
R01 DE021996 NIDCR NIH HHS - United States
R01 NS088518 NINDS NIH HHS - United States

Clinical and preclinical studies have revealed that local administration of opioid agonists into peripheral tissue attenuates inflammatory pain. However, few studies have examined whether peripherally restricted opioids are effective in reducing mechanical allodynia and hyperalgesia that usually follows nerve injury. The aim of the present study was to determine whether the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic pain conditions is depressed by direct activation of delta opioid receptors (DORs) on their peripheral terminals. A murine model of peripheral neuropathic pain was induced with a spared nerve (tibial) injury, in which mice survived 7 or 28 days after surgery before electrophysiological testing began. Control groups comprised naïve and sham-operated animals. An ex vivo preparation of mouse plantar skin with attached tibial nerve was used to examine electrophysiologically the effects of the selective DOR agonist, deltorphin II, on the response properties of individual cutaneous C-fiber nociceptors. In contrast to naïve and sham-operated animals, deltorphin II induced an inhibition of the mechanical responsiveness of C-fiber mechanical nociceptors innervating skin under neuropathic conditions. The effects of deltorphin II were concentration-dependent and prevented by pretreatment with naltrindole indicating DOR-mediated inhibitory effects of deltorphin II. Our results provide the first direct evidence for expression of functional DORs on mechanical nociceptors innervating skin in an animal model of neuropathic pain.

See more in PubMed

Bai L., Wang X., Li Z., Kong C., Zhao Y., Qian J.-L., et al. (2016). Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci. Bull. 32, 27–40.  10.1007/s12264-015-0007-4 PubMed DOI PMC

Barber A., Gottschlich R. (1992). Opioid agonists and antagonists: An evaluation of their peripheral actions in inflammation. Med. Res. Rev. 12, 525–562.  10.1002/med.2610120505 PubMed DOI

Bian D., Ossipov M. H., Ibrahim M., Raffa R. B., Tallarida R. J., Malan T. P., et al. (1999). Loss of antiallodynic and antinociceptive spinal/supraspinal morphine synergy in nerve-injured rats: restoration by MK-801 or dynorphin antiserum. Brain Res. 831, 55–63.  10.1016/S0006-8993(99)01393-1 PubMed DOI

Brederson J.-D., Honda C. N. (2015). Primary afferent neurons express functional delta opioid receptors in inflamed skin. Brain Res. 1614, 105–111.  10.1016/j.brainres.2015.04.023 PubMed DOI PMC

Bretag A. H. (1969). Synthetic interstial fluid for isolated mammalian tissue. Life Sci. 8, 319–329.  10.1016/0024-3205(69)90283-5 PubMed DOI

Chaplan S. R., Bach F. W., Pogrel J. W., Chung J. M., Yaksh T. L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63.  10.1016/0165-0270(94)90144-9 PubMed DOI

Chaudhry V., Cornblath D. R. (1992). Wallerian degeneration in human nerves: Serial electrophysiological studies. Muscle Nerve 15, 687–693.  10.1002/mus.880150610 PubMed DOI

Coggeshall R. E., Zhou S., Carlton S. M. (1997). Opioid receptors on peripheral sensory axons. Brain Res. 764, 126–132.  10.1016/S0006-8993(97)00446-0 PubMed DOI

Decosterd I., Woolf C. J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158.  10.1016/S0304-3959(00)00276-1 PubMed DOI

Duraku L. S., Hossaini M., Hoendervangers S., Falke L. L., Kambiz S., Mudera V. C., et al. (2012). Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury. Mol. Pain 8, 61.  10.1186/1744-8069-8-61 PubMed DOI PMC

Duraku L. S., Hossaini M., Schüttenhelm B. N., Holstege J. C., Baas M., Ruigrok T. J. H., et al. (2013). Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp. Neurol. 241, 13–24.  10.1016/j.expneurol.2012.11.029 PubMed DOI

Ferreira S. H., Nakamura M. (1979). II - Prostaglandin hyperalgesia: The peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 18, 191–200.  10.1016/0090-6980(79)90104-7 PubMed DOI

Gold M. S., Gebhart G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257.  10.1038/nm.2235 PubMed DOI PMC

Guan Y., Johanek L. M., Hartke T. V., Shim B., Tao Y.-X., Ringkamp M., et al. (2008). Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. PAIN 138, 318–329.  10.1016/j.pain.2008.01.004 PubMed DOI PMC

Hassan A. H. S., Ableitner A., Stein C., Herz A. (1993). Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 55, 185–195.  10.1016/0306-4522(93)90465-R PubMed DOI

Jensen T. S., Gottrup H., Sindrup S. H., Bach F. W. (2001). The clinical picture of neuropathic pain. Eur. J. Pharmacol. 429, 1–11.  10.1016/S0014-2999(01)01302-4 PubMed DOI

Joris J. L., Dubner R., Hargreaves K. M. (1987). Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation? Anesth. Analg. 66, 1277–1281. 10.1213/00000539-198712000-00013 PubMed DOI

Joris J., Costello A., Dubner R., Hargreaves K. M. (1990). Opiates suppress carrageenan-induced edema and hyperthermia at doses that inhibit hyperalgesia. Pain 43, 95–103.  10.1016/0304-3959(90)90054-H PubMed DOI

Kabli N., Cahill C. M. (2007). Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain 127, 84–93.  10.1016/j.pain.2006.08.003 PubMed DOI

Klusáková I., Dubový P. (2009). Experimental models of peripheral neuropathic pain based on traumatic nerve injuries – An anatomical perspective. Ann. Anat. - Anat. Anz. 191, 248–259.  10.1016/j.aanat.2009.02.007 PubMed DOI

Kuner R., Flor H. (2017). Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30.  10.1038/nrn.2016.162 PubMed DOI

Leah J., Koschorke G., Welk E., Zimmermann M. (1988). “Chapter 41 The expression of sensory receptors on regenerating and regenerated cutaneous C fibres,” in Progress in Brain Research Transduction and Cellular Mechanisms in Sensory Receptors. Eds. Hamann W., Iggo A. (Amsterdam, The Netherlands: Elsevier; ), 341–348.  10.1016/S0079-6123(08)63035-6 PubMed DOI

Levine J. D., Taiwo Y. O. (1989). Involvement of the mu-opiate receptor in peripheral analgesia. Neuroscience 32, 571–575.  10.1016/0306-4522(89)90279-0 PubMed DOI

Meyer R. A., Davis K. D., Cohen R. H., Treede R.-D., Campbell J. N. (1991). Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res. 561, 252–261.  10.1016/0006-8993(91)91601-V PubMed DOI

Mousa S. A., Zhang Q., Sitte N., Ji R.-R., Stein C. (2001). β-Endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue. J. Neuroimmunol. 115, 71–78.  10.1016/S0165-5728(01)00271-5 PubMed DOI

Obara I., Przewlocki R., Przewlocka B. (2004). Local peripheral effects of μ-opioid receptor agonists in neuropathic pain in rats. Neurosci. Lett. 360, 85–89.  10.1016/j.neulet.2004.01.056 PubMed DOI

Obara I., Makuch W., Spetea M., Schütz J., Schmidhammer H., Przewlocki R., et al. (2007). Local peripheral antinociceptive effects of 14-O-methyloxymorphone derivatives in inflammatory and neuropathic pain in the rat. Eur. J. Pharmacol. 558, 60–67.  10.1016/j.ejphar.2006.11.037 PubMed DOI

Obara I., Parkitna J. R., Korostynski M., Makuch W., Kaminska D., Przewlocka B., et al. (2009). Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. PAIN 141, 283–291.  10.1016/j.pain.2008.12.006 PubMed DOI

Pertovaara A., Wei H. (2001). Peripheral effects of morphine in neuropathic rats: role of sympathetic postganglionic nerve fibers. Eur. J. Pharmacol. 429, 139–145.  10.1016/S0014-2999(01)01315-2 PubMed DOI

Portenoy R. K., Hagen N. A. (1990). Breakthrough pain: definition, prevalence and characteristics. Pain 41, 273–281.  10.1016/0304-3959(90)90004-W PubMed DOI

Przewłocki R., Przewłocka B. (2001). Opioids in chronic pain. Eur. J. Pharmacol. 429, 79–91.  10.1016/S0014-2999(01)01308-5 PubMed DOI

Reeh P. W. (1986). Sensory receptors in mammalian skin in an in vitro preparation. Neurosci. Lett. 66, 141–146.  10.1016/0304-3940(86)90180-1 PubMed DOI

Russell N. J. W., Schaible H.-G., Schmidt R. F. (1987). Opiates inhibit the discharges of fine afferent units from inflamed knee joint of the cat. Neurosci. Lett. 76, 107–112.  10.1016/0304-3940(87)90201-1 PubMed DOI

Schmidt Y., Labuz D., Heppenstall P. A., Machelska H. (2012). Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy. Mol. Pain 8, 81.  10.1186/1744-8069-8-81 PubMed DOI PMC

Scholz J., Woolf C. J. (2007). The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361–1368.  10.1038/nn1992 PubMed DOI

Shields S. D., Eckert W. A., Basbaum A., II (2003). Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J. Pain 4, 465–470.  10.1067/S1526-5900(03)00781-8 PubMed DOI

Skolnick P. (2018). The Opioid Epidemic: Crisis and Solutions. Annu. Rev. Pharmacol. Toxicol. 58, 143–159.  10.1146/annurev-pharmtox-010617-052534 PubMed DOI

Smith A. K., O’Hara C. L., Stucky C. L. (2013). Mechanical sensitization of cutaneous sensory fibers in the spared nerve injury mouse model. Mol. Pain 9, 61.  10.1186/1744-8069-9-61 PubMed DOI PMC

Stein C., Zöllner C. (2009). Opioids and sensory nerves. Handb. Exp. Pharmacol. 194, 495–518.  10.1007/978-3-540-79090-7_14 PubMed DOI

Stein C., Millan M. J., Yassouridis A., Herz A. (1988). Antinociceptive effects of μ- and κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur. J. Pharmacol. 155, 255–264.  10.1016/0014-2999(88)90511-0 PubMed DOI

Stein C., Millan M. J., Shippenberg T. S., Peter K., Herz A. (1989). Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J. Pharmacol. Exp. Ther. 248, 1269–1275. PubMed

Stein C. (2018). New concepts in opioid analgesia. Expert Opin. Investig. Drugs 27, 765–775.  10.1080/13543784.2018.1516204 PubMed DOI

Swett J. E., Woolf C. J. (1985). The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J. Comp. Neurol. 231, 66–77.  10.1002/cne.902310106 PubMed DOI

Truong W., Cheng C., Xu Q.-G., Li X.-Q., Zochodne D. W. (2003). μ Opioid receptors and analgesia at the site of a peripheral nerve injury. Ann. Neurol. 53, 366–375.  10.1002/ana.10465 PubMed DOI

Walker J., Catheline G., Guilbaud G., Kayser V. (1999). Lack of cross-tolerance between the antinociceptive effects of systemic morphine and asimadoline, a peripherally-selective κ-opioid agonist, in CCI-neuropathic rats. Pain 83, 509–516.  10.1016/S0304-3959(99)00158-X PubMed DOI

Wenk H. N., Honda C. N. (1999). Immunohistochemical localization of delta opioid receptors in peripheral tissues. J. Comp. Neurol. 408, 567–579.  10.1002/(SICI)1096-9861(19990614)408:4<567::AID-CNE10>3.0.CO;2-Q PubMed DOI

Wenk H. N., Brederson J.-D., Honda C. N. (2006). Morphine Directly Inhibits Nociceptors in Inflamed Skin. J. Neurophysiol. 95, 2083–2097.  10.1152/jn.00394.2005 PubMed DOI

Woolf C. J., Mannion R. J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964.  10.1016/S0140-6736(99)01307-0 PubMed DOI

Zhang X., Bao L., Shi T.-J., Ju G., Elde R., Hökfelt T. (1997). Down-regulation of μ-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy. Neuroscience 82, 223–240.  10.1016/S0306-4522(97)00240-6 PubMed DOI

Zimmermann M. (2001). Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37.  10.1016/S0014-2999(01)01303-6 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...