Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27716807
PubMed Central
PMC5065128
DOI
10.1371/journal.pgen.1006360
PII: PGENETICS-D-16-01008
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce genetika MeSH
- Arabidopsis účinky léků genetika růst a vývoj MeSH
- DNA vazebné proteiny MeSH
- ethyleny metabolismus MeSH
- fyziologický stres genetika MeSH
- hliník toxicita MeSH
- jaderné proteiny genetika metabolismus MeSH
- kořeny rostlin účinky léků genetika růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- oxygenasy genetika MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- signální transdukce genetika MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- EIN3 protein, Arabidopsis MeSH Prohlížeč
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- hliník MeSH
- jaderné proteiny MeSH
- kyseliny indoloctové MeSH
- oxygenasy MeSH
- PIF4 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- transkripční faktory bHLH MeSH
- transkripční faktory MeSH
- YUC protein, Arabidopsis MeSH Prohlížeč
Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.
Zobrazit více v PubMed
Von Uexküll H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171: 1–15. 10.1007/bf00009558 DOI
Eswaran H, Reich P.., Beinroth F (1997) Global distribution of soils with acidity In:Plant-Soil Interactions at Low pH. Brazilian Soil Science Society: 159–164.
Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55: 459–493. 10.1146/annurev.arplant.55.031903.141655 PubMed DOI
Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci U S A 107: 18381–18385. 10.1073/pnas.1004949107 PubMed DOI PMC
Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4: 592–597. 10.4161/psb.4.7.8903 PubMed DOI PMC
Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell 24: 608–621. 10.1105/tpc.112.095596 PubMed DOI PMC
Yang ZB, Geng X, He C, Zhang F, Wang R, et al. (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26: 2889–2904. 10.1105/tpc.114.127993 PubMed DOI PMC
Ryan PR, Kochian LV (1993) Interaction between Aluminum Toxicity and Calcium Uptake at the Root Apex in Near-Isogenic Lines of Wheat (Triticum aestivum L.) Differing in Aluminum Tolerance. Plant Physiol 102: 975–982. PubMed PMC
Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116: 155–163. 10.1104/pp.116.1.155 DOI
Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58: 3895–3904. 10.1093/jxb/erm241 PubMed DOI
Moore A, Donahue CJ, Bauer KD, Mather JP (1998) Simultaneous measurement of cell cycle and apoptotic cell death. Methods Cell Biol 57: 265–278. PubMed
Steward N, Martin R, Engasser JM, Goergen JL (1999) A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep 19: 171–176. 10.1007/s002990050729 PubMed DOI
Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76: 297–307. 10.1111/tpj.12290 PubMed DOI
Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140: 943–950. 10.1242/dev.086363 PubMed DOI
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, et al. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306–309. 10.1126/science.291.5502.306 PubMed DOI
Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61: 49–64. 10.1146/annurev-arplant-042809-112308 PubMed DOI PMC
Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20: 1790–1799. 10.1101/gad.1415106 PubMed DOI PMC
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, et al. (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133: 177–191. 10.1016/j.cell.2008.01.047 PubMed DOI
Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, et al. (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133: 164–176. 10.1016/j.cell.2008.01.049 PubMed DOI PMC
Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, et al. (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108: 18518–18523. 10.1073/pnas.1108436108 PubMed DOI PMC
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, et al. (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108: 18512–18517. 10.1073/pnas.1108434108 PubMed DOI PMC
Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151: 168–179. 10.1104/pp.109.138859 PubMed DOI PMC
Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I, et al. (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9: 688 10.1038/msb.2013.40 PubMed DOI PMC
Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, et al. (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23: 2506–2512. 10.1016/j.cub.2013.09.039 PubMed DOI
Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci U S A 110: 1107–1112. 10.1073/pnas.1213497110 PubMed DOI PMC
Nozue K, Harmer SL, Maloof JN (2011) Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol 156: 357–372. 10.1104/pp.111.172684 PubMed DOI PMC
Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, et al. (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108: 20231–20235. 10.1073/pnas.1110682108 PubMed DOI PMC
Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, et al. (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71: 699–711. 10.1111/j.1365-313X.2012.05033.x PubMed DOI
Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 8: e1002594 10.1371/journal.pgen.1002594 PubMed DOI PMC
Sun P, Tian QY, Zhao MG, Dai XY, Huang JH, et al. (2007) Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol 48: 1229–1235. 10.1093/pcp/pcm077 PubMed DOI
Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61: 347–356. 10.1093/jxb/erp306 PubMed DOI PMC
Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, et al. (2013) Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol 162: 1947–1955. 10.1104/pp.113.219147 PubMed DOI PMC
Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, et al. (2012) Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem Biol 7: 590–598. 10.1021/cb200404c PubMed DOI
Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, et al. (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A 105: 5632–5637. 10.1073/pnas.0711146105 PubMed DOI PMC
Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, et al. (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55: 1072–1079. 10.1093/pcp/pcu039 PubMed DOI PMC
Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, et al. (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100: 2992–2997. 10.1073/pnas.0438070100 PubMed DOI PMC
Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, et al. (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77: 352–366. 10.1111/tpj.12399 PubMed DOI
Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res 28: 960–967. 10.1093/nar/28.4.960 PubMed DOI PMC
Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, et al. (2005) Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348: 253–264. 10.1016/j.jmb.2005.02.065 PubMed DOI
Sakuraba Y, Jeong J, Kang MY, Kim J, Paek NC, et al. (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun 5: 4636 10.1038/ncomms5636 PubMed DOI
Song Y, Yang C, Gao S, Zhang W, Li L, et al. (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7: 1776–1787. 10.1093/mp/ssu109 PubMed DOI PMC
Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2: a001537 10.1101/cshperspect.a001537 PubMed DOI PMC
Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112: 1655–1665. 10.1093/aob/mct229 PubMed DOI PMC
Tian H, Wabnik K, Niu T, Li H, Yu Q, et al. (2014) WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol Plant 7: 277–289. 10.1093/mp/sst118 PubMed DOI
Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19: 2430–2439. 10.1105/tpc.107.053009 PubMed DOI PMC
Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, et al. (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197–2212. 10.1105/tpc.107.052126 PubMed DOI PMC
Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, et al. (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186–2196. 10.1105/tpc.107.052100 PubMed DOI PMC
Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 2169–2185. 10.1105/tpc.107.052068 PubMed DOI PMC
He W, Brumos J, Li H, Ji Y, Ke M, et al. (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23: 3944–3960. 10.1105/tpc.111.089029 PubMed DOI PMC
Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS (2013) Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS Genet 9: e1003564 10.1371/journal.pgen.1003564 PubMed DOI PMC
Tian Q, Zhang X, Ramesh S, Gilliham M, Tyerman SD, et al. (2014) Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. J Exp Bot 65: 2415–2426. 10.1093/jxb/eru123 PubMed DOI PMC
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17: 2230–2242. 10.1105/tpc.105.033365 PubMed DOI PMC
Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, et al. (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2: e00675 10.7554/eLife.00675 PubMed DOI PMC
Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27: 20–32. 10.1105/tpc.114.134874 PubMed DOI PMC
Smit ME, Weijers D (2015) The role of auxin signaling in early embryo pattern formation. Curr Opin Plant Biol 28: 99–105. 10.1016/j.pbi.2015.10.001 PubMed DOI
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, et al. (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18: 450–458. 10.1016/j.tplants.2013.04.006 PubMed DOI
Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59: 443–465. 10.1146/annurev.arplant.58.032806.103805 PubMed DOI
Wu D, Shen H, Yokawa K, Baluska F (2014) Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 65: 5305–5315. 10.1093/jxb/eru292 PubMed DOI PMC
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, et al. (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426: 147–153. 10.1038/nature02085 PubMed DOI
Murashige T, Skoog FK (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI
Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, et al. (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145: 843–852. 10.1104/pp.107.102335 PubMed DOI PMC
Wang X, Gao J, Zhu Z, Dong X, Ren G, et al. (2015) TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J 82: 151–162. 10.1111/tpj.12803 PubMed DOI
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13 10.1186/1746-4811-1-13 PubMed DOI PMC
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565–1572. 10.1038/nprot.2007.199 PubMed DOI
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells