Shroom3 facilitates optic fissure closure via tissue alignment and reestablishment of apical-basal polarity during epithelial fusion

. 2025 Jun ; 522 () : 91-105. [epub] 20250318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid40113025

Grantová podpora
R01 EY026910 NEI NIH HHS - United States
R01 EY033815 NEI NIH HHS - United States
T35 EY007151 NEI NIH HHS - United States

Odkazy

PubMed 40113025
PubMed Central PMC12183768
DOI 10.1016/j.ydbio.2025.03.008
PII: S0012-1606(25)00070-3
Knihovny.cz E-zdroje

Optic cup morphogenesis is a complex process involving cellular behaviors such as epithelial folding, cell shape changes, proliferation, and tissue fusion. Disruptions to these processes can lead to an ocular coloboma, a congenital defect where the optic fissure fails to close. This study investigates the role of Shroom3, a protein implicated in epithelial morphogenesis, in mouse embryos during optic cup development. It was observed that Shroom3 is apically localized in the neural retina and retinal pigmented epithelium, and its deficiency leads to a both a conventional coloboma phenotype characterized by a gap in pigmented tissue as well as a unique type of coloboma where an ectopic ventral fold of neural tissue is present. Increased apical areas of both neural retina and retinal pigmented epithelial cells are present in the absence of Shroom3 leading to a greater apical surface area and disruption of optic fissure alignment. Neural retina specific gene ablation revealed that Shroom3 function in the RPE is likely sufficient to facilitate tissue alignment and permit fusion. However, the fusion process is ultimately disturbed due to a failure of the neural tissue to reestablish apical-basal polarity. Furthermore, it is demonstrated that Shroom3 deficiency also affects other epithelial fusion events in the embryo that rely on polarity reestablishment, such as lens vesicle separation, eyelid formation, and secondary palate closure. These findings highlight the importance of Shroom3 during optic cup morphogenesis, aid our understanding of optic fissure closure and coloboma formation, and implicates a role for Shroom3 in regulating apical-basal polarity.

Zobrazit více v PubMed

ALSomiry AS, Gregory-Evans CY, Gregory-Evans K, 2019. An update on the genetics of ocular coloboma. Hum. Genet. 138, 865–880. PubMed

Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC, 2004. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466. PubMed

Barrera-Velázquez M, Ríos-Barrera LD, 2021. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biology open 10. PubMed PMC

Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S, 2018. The cellular bases of choroid fissure formation and closure. Dev. Biol. 440, 137–151. PubMed PMC

Bonilha VL, Finnemann SC, Rodriguez-Boulan E, 1999. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. JCB (J. Cell Biol.) 147, 1533–1547. PubMed PMC

Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG, 2006. Microvilli defects in retinas of ezrin knockout mice. Exp. Eye Res. 82, 720–729. PubMed

Casey MA, Lusk S, Kwan KM, 2021. Build me up optic cup: intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev. Biol. 476, 128–136. PubMed PMC

Casey MA, Lusk S, Kwan KM, 2023. Eye morphogenesis in vertebrates. Annu Rev Vis Sci. 9, 221–243. PubMed

Cechmanek PB, McFarlane S, 2017. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Dev. Dyn. : an official publication of the American Association of Anatomists 246, 598–609. PubMed

Chan BHC, Moosajee M, Rainger J, 2020. Closing the gap: mechanisms of epithelial fusion during optic fissure closure. Front. Cell Dev. Biol. 8, 620774. PubMed PMC

Chan BHC, Moosajee M, Rainger J, 2021. Mechanisms of epithelial fusion during optic fissure closure. Front. Cell Dev. Biol. 8. PubMed PMC

Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB, 2010. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 137, 1339–1349. PubMed PMC

Eckert P, Knickmeyer MD, Heermann S, 2020. In vivo analysis of optic fissure fusion in zebrafish: pioneer cells, basal lamina, hyaloid vessels, and how fissure fusion is affected by BMP. Int. J. Mol. Sci. 21. PubMed PMC

Eiraku M, Adachi T, Sasai Y, 2012. Relaxation-expansion model for self-driven retinal morphogenesis A hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays 34, 17–25. PubMed PMC

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y, 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–U73. PubMed

Fuhrmann S, 2010. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84. PubMed PMC

Galvagni F, Baldari CT, Oliviero S, Orlandini M, 2012. An apical actin-rich domain drives the establishment of cell polarity during cell adhesion. Histochem. Cell Biol. 138, 419–433. PubMed PMC

Gestri G, Bazin-Lopez N, Scholes C, Wilson SW, 2018. Cell behaviors during closure of the choroid fissure in the developing eye. Front. Cell. Neurosci. 12. PubMed PMC

Gomez-Galvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letran M, Valencia-Exposito A, Grima C, Bermudez-Gallardo M, Serrano-Perez-Higueras O, et al. , 2018. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat. Commun. 9, 2960. PubMed PMC

Grosse AS, Pressprich MF, Curley LB, Hamilton KL, Margolis B, Hildebrand JD, Gumucio DL, 2011. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development 138, 4423–4432. PubMed PMC

Hardy H, Rainger J, 2023. Cell adhesion marker expression dynamics during fusion of the optic fissure. Gene Expr. Patterns 50, 119344. PubMed

Hardy H, Prendergast JGD, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, et al. , 2019. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. Elife 8. PubMed PMC

Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J, 2015. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. Elife 4. PubMed PMC

Hildebrand JD, 2005. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203. PubMed

Hildebrand JD, Soriano P, 1999. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497. PubMed

Houssin NS, Martin JB, Coppola V, Yoon SO, Plageman TF, 2020. Formation and contraction of multicellular actomyosin cables facilitate lens placode invagination. Dev. Biol. 462, 36–49. PubMed PMC

Kivelä T, Jääske läinen J, Vaheri A, Carpén O, 2000. Ezrin, a membrane-organizing protein, as a polarization marker of the retinal pigment epithelium in vertebrates. Cell Tissue Res. 301, 217–223. PubMed

Klimova L, Lachova J, Machon O, Sedlacek R, Kozmik Z, 2013. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8, e63029. PubMed PMC

Kwan KM, Otsuna H, Kidokoro H, Carney KR, Saijoh Y, Chien CB, 2012. A complex choreography of cell movements shapes the vertebrate eye. Development 139, 359–372. PubMed PMC

Lang RA, Herman K, Reynolds AB, Hildebrand JD, Plageman TF Jr., 2014. p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development 141, 3177–3187. PubMed PMC

Lawlor A, Cunanan K, Cunanan J, Paul A, Khalili H, Ko D, Khan A, Gros R, Drysdale T, Bridgewater D, 2023. Minimal kidney disease phenotype in Shroom3 heterozygous null mice. Can J. Kidney Health Dis. 10, 20543581231165716. PubMed PMC

Lee C, Scherr HM, Wallingford JB, 2007. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134, 1431–1441. PubMed

Lingam G, Sen AC, Lingam V, Bhende M, Padhi TR, Su XY, 2021. Ocular coloboma-a comprehensive review for the clinician. Eye 35, 2086–2109. PubMed PMC

Loebel DA, Plageman TF Jr., Tang TL, Jones VJ, Muccioli M, Tam PP, 2016. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biology open 5, 130–139. PubMed PMC

Marean A, Graf A, Zhang Y, Niswander L, 2011. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum. Mol. Genet. 20, 3678–3683. PubMed PMC

Martinez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-Padros M, Takata N, Trepat X, Eiraku M, Ebisuya M, 2022. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat. Commun. 13, 5400. PubMed PMC

Martinez-Morales JR, Rembold M, Greger K, Simpson JC, Brown KE, Quiring R, Pepperkok R, Martin-Bermudo MD, Himmelbauer H, Wittbrodt J, 2009. Ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 136, 2165–2175. PubMed

Massarwa R, Niswander L, 2013. In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development 140, 226–236. PubMed PMC

Meiring JCM, Shneyer BI, Akhmanova A, 2020. Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr. Opin. Cell Biol. 62, 86–95. PubMed

Moreno-Marmol T, Ledesma-Terron M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ, Cavodeassi F, Bovolenta P, 2021. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. Elife 10. PubMed PMC

Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo LQ, 2007. A global double-fluorescent cre reporter mouse. Genesis 45, 593–605. PubMed

Nicolas-Perez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martinez-Morales JR, 2016. Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. Elife 5. PubMed PMC

Nishimura T, Takeichi M, 2008. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135, 1493–1502. PubMed

Oltean A, Huang J, Beebe DC, Taber LA, 2016. Tissue growth constrained by extracellular matrix drives invagination during optic cup morphogenesis. Biomech. Model. Mechanobiol. 15, 1405–1421. PubMed PMC

Patel A, Sowden JC, 2019. Genes and pathways in optic fissure closure. Semin. Cell Dev. Biol. 91, 55–65. PubMed

Plageman TF, Reynolds A, Lang RA, 2014. Junctional p120-catenin recruitment of Shroom3 facilitates apical constriction during lens pit morphogenesis. Investig. Ophthalmol. Vis. Sci. 55. PubMed PMC

Plageman TF Jr., Zacharias AL, Gage PJ, Lang RA, 2011a. Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev. Biol. 357, 227–234. PubMed PMC

Plageman TF Jr., Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, Lang RA, 2010. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137, 405–415. PubMed PMC

Plageman TF Jr., Chauhan BK, Yang C, Jaudon F, Shang X, Zheng Y, Lou M, Debant A, Hildebrand JD, Lang RA, 2011b. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development 138, 5177–5188. PubMed PMC

Sauvanet C, Wayt J, Pelaseyed T, Bretscher A, 2015. Structure, regulation, and functional diversity of microvilli on the Apical.Domain of epithelial cells. Annu Rev Cell Dev Bi 31, 593–621. PubMed

Sidhaye J, Norden C, 2017. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. Elife 6. PubMed PMC

Silver J, Sapiro J, 1981. Axonal guidance during development of the optic-nerve - the role of pigmented epithelia and other extrinsic factors. J. Comp. Neurol. 202, 521–538. PubMed

Sun WR, Ramirez S, Spiller KE, Zhao Y, Fuhrmann S, 2020. Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye. Hum. Mol. Genet. 29, 3373–3387. PubMed PMC

Taylor J, Chung KH, Figueroa C, Zurawski J, Dickson HM, Brace EJ, Avery AW, Turner DL, Vojtek AB, 2008. The scaffold protein POSH regulates axon outgrowth. Mol. Biol. Cell 19, 5181–5192. PubMed PMC

Zhu LX, Crothers J, Zhou RH, Forte JG, 2010. A possible mechanism for ezrin to establish epithelial cell polarity. Am J Physiol-Cell Ph 299, C431–C443. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...