Shroom3 facilitates optic fissure closure via tissue alignment and reestablishment of apical-basal polarity during epithelial fusion
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 EY026910
NEI NIH HHS - United States
R01 EY033815
NEI NIH HHS - United States
T35 EY007151
NEI NIH HHS - United States
PubMed
40113025
PubMed Central
PMC12183768
DOI
10.1016/j.ydbio.2025.03.008
PII: S0012-1606(25)00070-3
Knihovny.cz E-zdroje
- MeSH
- kolobom embryologie genetika MeSH
- mikrofilamentové proteiny MeSH
- morfogeneze MeSH
- myši MeSH
- polarita buněk * fyziologie MeSH
- retina embryologie metabolismus MeSH
- retinální pigmentový epitel embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mikrofilamentové proteiny MeSH
- Shrm protein, mouse MeSH Prohlížeč
Optic cup morphogenesis is a complex process involving cellular behaviors such as epithelial folding, cell shape changes, proliferation, and tissue fusion. Disruptions to these processes can lead to an ocular coloboma, a congenital defect where the optic fissure fails to close. This study investigates the role of Shroom3, a protein implicated in epithelial morphogenesis, in mouse embryos during optic cup development. It was observed that Shroom3 is apically localized in the neural retina and retinal pigmented epithelium, and its deficiency leads to a both a conventional coloboma phenotype characterized by a gap in pigmented tissue as well as a unique type of coloboma where an ectopic ventral fold of neural tissue is present. Increased apical areas of both neural retina and retinal pigmented epithelial cells are present in the absence of Shroom3 leading to a greater apical surface area and disruption of optic fissure alignment. Neural retina specific gene ablation revealed that Shroom3 function in the RPE is likely sufficient to facilitate tissue alignment and permit fusion. However, the fusion process is ultimately disturbed due to a failure of the neural tissue to reestablish apical-basal polarity. Furthermore, it is demonstrated that Shroom3 deficiency also affects other epithelial fusion events in the embryo that rely on polarity reestablishment, such as lens vesicle separation, eyelid formation, and secondary palate closure. These findings highlight the importance of Shroom3 during optic cup morphogenesis, aid our understanding of optic fissure closure and coloboma formation, and implicates a role for Shroom3 in regulating apical-basal polarity.
College of Optometry The Ohio State University Columbus OH USA
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
ALSomiry AS, Gregory-Evans CY, Gregory-Evans K, 2019. An update on the genetics of ocular coloboma. Hum. Genet. 138, 865–880. PubMed
Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC, 2004. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466. PubMed
Barrera-Velázquez M, Ríos-Barrera LD, 2021. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biology open 10. PubMed PMC
Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S, 2018. The cellular bases of choroid fissure formation and closure. Dev. Biol. 440, 137–151. PubMed PMC
Bonilha VL, Finnemann SC, Rodriguez-Boulan E, 1999. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. JCB (J. Cell Biol.) 147, 1533–1547. PubMed PMC
Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG, 2006. Microvilli defects in retinas of ezrin knockout mice. Exp. Eye Res. 82, 720–729. PubMed
Casey MA, Lusk S, Kwan KM, 2021. Build me up optic cup: intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev. Biol. 476, 128–136. PubMed PMC
Casey MA, Lusk S, Kwan KM, 2023. Eye morphogenesis in vertebrates. Annu Rev Vis Sci. 9, 221–243. PubMed
Cechmanek PB, McFarlane S, 2017. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Dev. Dyn. : an official publication of the American Association of Anatomists 246, 598–609. PubMed
Chan BHC, Moosajee M, Rainger J, 2020. Closing the gap: mechanisms of epithelial fusion during optic fissure closure. Front. Cell Dev. Biol. 8, 620774. PubMed PMC
Chan BHC, Moosajee M, Rainger J, 2021. Mechanisms of epithelial fusion during optic fissure closure. Front. Cell Dev. Biol. 8. PubMed PMC
Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB, 2010. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 137, 1339–1349. PubMed PMC
Eckert P, Knickmeyer MD, Heermann S, 2020. In vivo analysis of optic fissure fusion in zebrafish: pioneer cells, basal lamina, hyaloid vessels, and how fissure fusion is affected by BMP. Int. J. Mol. Sci. 21. PubMed PMC
Eiraku M, Adachi T, Sasai Y, 2012. Relaxation-expansion model for self-driven retinal morphogenesis A hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays 34, 17–25. PubMed PMC
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y, 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–U73. PubMed
Fuhrmann S, 2010. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84. PubMed PMC
Galvagni F, Baldari CT, Oliviero S, Orlandini M, 2012. An apical actin-rich domain drives the establishment of cell polarity during cell adhesion. Histochem. Cell Biol. 138, 419–433. PubMed PMC
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW, 2018. Cell behaviors during closure of the choroid fissure in the developing eye. Front. Cell. Neurosci. 12. PubMed PMC
Gomez-Galvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letran M, Valencia-Exposito A, Grima C, Bermudez-Gallardo M, Serrano-Perez-Higueras O, et al. , 2018. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat. Commun. 9, 2960. PubMed PMC
Grosse AS, Pressprich MF, Curley LB, Hamilton KL, Margolis B, Hildebrand JD, Gumucio DL, 2011. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development 138, 4423–4432. PubMed PMC
Hardy H, Rainger J, 2023. Cell adhesion marker expression dynamics during fusion of the optic fissure. Gene Expr. Patterns 50, 119344. PubMed
Hardy H, Prendergast JGD, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, et al. , 2019. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. Elife 8. PubMed PMC
Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J, 2015. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. Elife 4. PubMed PMC
Hildebrand JD, 2005. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203. PubMed
Hildebrand JD, Soriano P, 1999. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497. PubMed
Houssin NS, Martin JB, Coppola V, Yoon SO, Plageman TF, 2020. Formation and contraction of multicellular actomyosin cables facilitate lens placode invagination. Dev. Biol. 462, 36–49. PubMed PMC
Kivelä T, Jääske läinen J, Vaheri A, Carpén O, 2000. Ezrin, a membrane-organizing protein, as a polarization marker of the retinal pigment epithelium in vertebrates. Cell Tissue Res. 301, 217–223. PubMed
Klimova L, Lachova J, Machon O, Sedlacek R, Kozmik Z, 2013. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8, e63029. PubMed PMC
Kwan KM, Otsuna H, Kidokoro H, Carney KR, Saijoh Y, Chien CB, 2012. A complex choreography of cell movements shapes the vertebrate eye. Development 139, 359–372. PubMed PMC
Lang RA, Herman K, Reynolds AB, Hildebrand JD, Plageman TF Jr., 2014. p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development 141, 3177–3187. PubMed PMC
Lawlor A, Cunanan K, Cunanan J, Paul A, Khalili H, Ko D, Khan A, Gros R, Drysdale T, Bridgewater D, 2023. Minimal kidney disease phenotype in Shroom3 heterozygous null mice. Can J. Kidney Health Dis. 10, 20543581231165716. PubMed PMC
Lee C, Scherr HM, Wallingford JB, 2007. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134, 1431–1441. PubMed
Lingam G, Sen AC, Lingam V, Bhende M, Padhi TR, Su XY, 2021. Ocular coloboma-a comprehensive review for the clinician. Eye 35, 2086–2109. PubMed PMC
Loebel DA, Plageman TF Jr., Tang TL, Jones VJ, Muccioli M, Tam PP, 2016. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biology open 5, 130–139. PubMed PMC
Marean A, Graf A, Zhang Y, Niswander L, 2011. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum. Mol. Genet. 20, 3678–3683. PubMed PMC
Martinez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-Padros M, Takata N, Trepat X, Eiraku M, Ebisuya M, 2022. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat. Commun. 13, 5400. PubMed PMC
Martinez-Morales JR, Rembold M, Greger K, Simpson JC, Brown KE, Quiring R, Pepperkok R, Martin-Bermudo MD, Himmelbauer H, Wittbrodt J, 2009. Ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 136, 2165–2175. PubMed
Massarwa R, Niswander L, 2013. In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development 140, 226–236. PubMed PMC
Meiring JCM, Shneyer BI, Akhmanova A, 2020. Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr. Opin. Cell Biol. 62, 86–95. PubMed
Moreno-Marmol T, Ledesma-Terron M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ, Cavodeassi F, Bovolenta P, 2021. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. Elife 10. PubMed PMC
Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo LQ, 2007. A global double-fluorescent cre reporter mouse. Genesis 45, 593–605. PubMed
Nicolas-Perez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martinez-Morales JR, 2016. Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. Elife 5. PubMed PMC
Nishimura T, Takeichi M, 2008. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135, 1493–1502. PubMed
Oltean A, Huang J, Beebe DC, Taber LA, 2016. Tissue growth constrained by extracellular matrix drives invagination during optic cup morphogenesis. Biomech. Model. Mechanobiol. 15, 1405–1421. PubMed PMC
Patel A, Sowden JC, 2019. Genes and pathways in optic fissure closure. Semin. Cell Dev. Biol. 91, 55–65. PubMed
Plageman TF, Reynolds A, Lang RA, 2014. Junctional p120-catenin recruitment of Shroom3 facilitates apical constriction during lens pit morphogenesis. Investig. Ophthalmol. Vis. Sci. 55. PubMed PMC
Plageman TF Jr., Zacharias AL, Gage PJ, Lang RA, 2011a. Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev. Biol. 357, 227–234. PubMed PMC
Plageman TF Jr., Chung MI, Lou M, Smith AN, Hildebrand JD, Wallingford JB, Lang RA, 2010. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137, 405–415. PubMed PMC
Plageman TF Jr., Chauhan BK, Yang C, Jaudon F, Shang X, Zheng Y, Lou M, Debant A, Hildebrand JD, Lang RA, 2011b. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development 138, 5177–5188. PubMed PMC
Sauvanet C, Wayt J, Pelaseyed T, Bretscher A, 2015. Structure, regulation, and functional diversity of microvilli on the Apical.Domain of epithelial cells. Annu Rev Cell Dev Bi 31, 593–621. PubMed
Sidhaye J, Norden C, 2017. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. Elife 6. PubMed PMC
Silver J, Sapiro J, 1981. Axonal guidance during development of the optic-nerve - the role of pigmented epithelia and other extrinsic factors. J. Comp. Neurol. 202, 521–538. PubMed
Sun WR, Ramirez S, Spiller KE, Zhao Y, Fuhrmann S, 2020. Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye. Hum. Mol. Genet. 29, 3373–3387. PubMed PMC
Taylor J, Chung KH, Figueroa C, Zurawski J, Dickson HM, Brace EJ, Avery AW, Turner DL, Vojtek AB, 2008. The scaffold protein POSH regulates axon outgrowth. Mol. Biol. Cell 19, 5181–5192. PubMed PMC
Zhu LX, Crothers J, Zhou RH, Forte JG, 2010. A possible mechanism for ezrin to establish epithelial cell polarity. Am J Physiol-Cell Ph 299, C431–C443. PubMed PMC