Conditional knockout of hephaestin in the neural retina disrupts retinal iron homeostasis

. 2022 May ; 218 () : 109028. [epub] 20220308

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35271829

Grantová podpora
F30 EY032339 NEI NIH HHS - United States
P30 EY001583 NEI NIH HHS - United States
R01 EY015240 NEI NIH HHS - United States
T32 EY007035 NEI NIH HHS - United States

Odkazy

PubMed 35271829
PubMed Central PMC9050911
DOI 10.1016/j.exer.2022.109028
PII: S0014-4835(22)00109-9
Knihovny.cz E-zdroje

Iron accumulation has been implicated in degenerative retinal diseases. It can catalyze the production of damaging reactive oxygen species. Previous work has demonstrated iron accumulation in multiple retinal diseases, including age-related macular degeneration and diabetic retinopathy. In mice, systemic knockout of the ferroxidases ceruloplasmin (Cp) and hephaestin (Heph), which oxidize iron, results in retinal iron accumulation and iron-induced degeneration. To determine the role of Heph in the retina, we generated a neural retina-specific Heph knockout on a background of systemic Cp knockout. This resulted in elevated neural retina iron. Conversely, retinal ganglion cells had elevated transferrin receptor and decreased ferritin, suggesting diminished iron levels. The retinal degeneration observed in systemic Cp-/-, Heph-/- mice did not occur. These findings indicate that Heph has a local role in regulating neural retina iron homeostasis, but also suggest that preserved Heph function in either the RPE or systemically mitigates the degeneration phenotype observed in the systemic Cp-/-, Heph-/- mice.

Zobrazit více v PubMed

Beard JL, 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr 131. 10.1093/JN/131.2.568S PubMed DOI

Casini G, Sartini F, Loiudice P, Benini G, Menchini M, 2020. Ocular siderosis: a misdiagnosed cause of visual loss due to ferrous intraocular foreign bodies—epidemiology, pathogenesis, clinical signs, imaging and available treatment options. Doc. Ophthalmol 2020 1422 142, 133–152. 10.1007/S10633-020-09792-X PubMed DOI PMC

De Domenico I, Ward DM, di Patti MCB, Jeong SY, David S, Musci G, Kaplan J, 2007. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26, 2823. 10.1038/SJ.EMBOJ.7601735 PubMed DOI PMC

Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC, 2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1, 191–200. 10.1016/J.CMET.2005.01.003 PubMed DOI

Dunaief J, Richa C, Franks E, Schultze R, Aleman T, Schenck J, Zimmerman E, Brooks D, 2005. Macular Degeneration in a Patient with Aceruloplasminemia, a Disease Associated with Retinal Iron Overload. Ophthalmology 112, 1062–1065. 10.1016/j.ophtha.2004.12.029 PubMed DOI

Hadziahmetovic M, Dentchev T, Song Y, Haddad N, He X, Hahn P, Pratico D, Wen R, Harris ZL, Lambris JD, Beard J, Dunaief JL, 2008. Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest. Ophthalmol. Vis. Sci 49, 2728–2736. 10.1167/IOVS.07-1472 PubMed DOI PMC

Hadziahmetovic M, Song Y, Ponnuru P, Iacovelli J, Hunter A, Haddad N, Beard J, Connor JR, Vaulont S, Dunaief JL, 2011a. Age-Dependent Retinal Iron Accumulation and Degeneration in Hepcidin Knockout Mice. Invest. Ophthalmol. Vis. Sci 52, 109–118. 10.1167/IOVS.10-6113 PubMed DOI PMC

Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Grieco S, Lee J, Lyubarsky A, Pratico D, Connelly J, Spino M, Harris ZL, Dunaief JL, 2011b. The Oral Iron Chelator Deferiprone Protects against Iron Overload–Induced Retinal Degeneration. Invest. Ophthalmol. Vis. Sci 52, 959–968. 10.1167/IOVS.10-6207 PubMed DOI PMC

Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Kautz L, Roth M-P, Dunaief JL, 2011c. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration. Am. J. Pathol 179, 335. 10.1016/J.AJPATH.2011.03.033 PubMed DOI PMC

Hahn P, Milam AH, Dunaief JL, 2003. Maculas Affected by Age-Related Macular Degeneration Contain Increased Chelatable Iron in the Retinal Pigment Epithelium and Bruch’s Membrane. Arch. Ophthalmol 121, 1099. 10.1001/archopht.121.8.1099 PubMed DOI

Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL, 2004. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc. Natl. Acad. Sci. U. S. A 101, 13850–13855. 10.1073/PNAS.0405146101 PubMed DOI PMC

Harris ZL, Durley AP, Man TK, Gitlin JD, 1999. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. U. S. A 96, 10812–10817. 10.1073/PNAS.96.19.10812 PubMed DOI PMC

Harvey PT, 2003. Common eye diseases of elderly people: identifying and treating causes of vision loss. Gerontology 49, 1–11. 10.1159/000066507 PubMed DOI

Klimova L, Lachova J, Machon O, Sedlacek R, Kozmik Z, 2013. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8. 10.1371/JOURNAL.PONE.0063029 PubMed DOI PMC

Liu Y, Baumann B, Song Y, Zhang K, Sterling JK, Lakhal-Littleton S, Kozmik Z, Su G, Dunaief JL, 2022. Minimal effect of conditional ferroportin KO in the neural retina implicates ferrous iron in retinal iron overload and degeneration. Exp. Eye Res 108988. 10.1016/J.EXER.2022.108988 PubMed DOI PMC

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA, 2015. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202–1214. 10.1016/J.CELL.2015.05.002 PubMed DOI PMC

Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L, 2007. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605. 10.1002/DVG.20335 PubMed DOI

Pirie A, 1965. A light catalyzed reaction in the aqueous humor of the eye. Nature 205, 500–501. 10.1038/205500A0 PubMed DOI

Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, Ganz T, 2005. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106, 2196–2199. 10.1182/BLOOD-2005-04-1766 PubMed DOI PMC

Rouault TA, Tang CK, Kaptain S, Burgess WH, Haile DJ, Samaniego F, McBride OW, Harford JB, Klausner RD, 1990. Cloning of the cDNA encoding an RNA regulatory protein--the human iron-responsive element-binding protein. Proc. Natl. Acad. Sci. U. S. A 87, 7958–7962. 10.1073/PNAS.87.20.7958 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A, 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012 97 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schleicher RL, Carroll MD, Ford ES, Lacher DA, 2009. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr 90, 1252–1263. 10.3945/AJCN.2008.27016 PubMed DOI

Shu W, Baumann BH, Song Y, Liu Y, Wu X, Dunaief JL, 2019. Iron Accumulates in Retinal Vascular Endothelial Cells But Has Minimal Retinal Penetration After IP Iron Dextran Injection in Mice. Invest. Ophthalmol. Vis. Sci 60, 4378. 10.1167/IOVS.19-28250 PubMed DOI PMC

Sterling J, Guttha S, Song Y, Song D, Hadziahmetovic M, Dunaief JL, 2017. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp. Eye Res 155, 15–23. 10.1016/J.EXER.2016.12.008 PubMed DOI PMC

Syed BA, Beaumont NJ, Patel A, Naylor CE, Bayele HK, Joannou CL, Rowe PSN, Evans RW, Srai SK, 2002. Analysis of the human hephaestin gene and protein: comparative modelling of the N-terminus ecto-domain based upon ceruloplasmin. Protein Eng 15, 205–214. 10.1093/PROTEIN/15.3.205 PubMed DOI

Wolkow N, Song D, Song Y, Chu S, Hadziahmetovic M, Lee JC, Iacovelli J, Grieco S, Dunaief JL, 2012. Ferroxidase Hephaestin’s Cell-Autonomous Role in the Retinal Pigment Epithelium. Am. J. Pathol 180, 1614. 10.1016/J.AJPATH.2011.12.041 PubMed DOI PMC

Wolkow N, Song Y, Wu T-D, Qian J, Guerquin-Kern J-L, Dunaief JL, 2011. Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. Arch. Ophthalmol. (Chicago, Ill. 1960) 129, 1466–1474. 10.1001/ARCHOPHTHALMOL.2011.309 PubMed DOI PMC

Zhao J, Kim HJ, Ueda K, Zhang K, Montenegro D, Dunaief JL, Sparrow JR, 2021. A vicious cycle of bisretinoid formation and oxidation relevant to recessive Stargardt disease. J. Biol. Chem 296. 10.1016/J.JBC.2021.100259 PubMed DOI PMC

Zhao N, Zhang AS, Worthen C, Knutson MD, Enns CA, 2014. An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc. Natl. Acad. Sci. U. S. A 111, 9175–9180. 10.1073/PNAS.1405355111/-/DCSUPPLEMENTAL PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...