Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MUNI/A/1582/2023
Masaryk University
PubMed
38792154
PubMed Central
PMC11124392
DOI
10.3390/molecules29102293
PII: molecules29102293
Knihovny.cz E-zdroje
- Klíčová slova
- PHA, PHB, autotrophy, heterotrophy, methylotrophy,
- MeSH
- Bacteria * metabolismus MeSH
- polyhydroxyalkanoáty * biosyntéza metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- polyhydroxyalkanoáty * MeSH
- uhlík MeSH
Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge. One potential solution is to modify heterotrophic PHA-producing strains to utilize alternative carbon sources. An alternative approach is to utilize methylotrophic or autotrophic strains. This article provides an overview of bacterial strains employed for PHA production, with a particular focus on those exhibiting the highest PHA content in dry cell mass. The strains are organized according to their carbon source utilization, encompassing autotrophy (utilizing CO2, CO) and methylotrophy (utilizing reduced single-carbon substrates) to heterotrophy (utilizing more traditional and alternative substrates).
Zobrazit více v PubMed
Ainali N.M., Kalaronis D., Evgenidou E., Kyzas G.Z., Bobori D.C., Kaloyianni M., Yang X., Bikiaris D.N., Lambropoulou D.A. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Sci. Total. Environ. 2022;832:155014. doi: 10.1016/j.scitotenv.2022.155014. PubMed DOI
Atarés L., Chiralt A., González-Martínez C., Vargas M. Production of Polyhydroxyalkanoates for Biodegradable Food Packaging Applications Using Haloferax mediterranei and Agrifood Wastes. Foods. 2024;13:950. doi: 10.3390/foods13060950. PubMed DOI PMC
Bulantekin Ö., Alp D. Food Processing and Packaging Technologies—Recent Advances. IntechOpen; London, UK: 2022. Perspective Chapter: Development of Food Packaging Films from Microorganism-Generated Polyhydroxyalkanoates. DOI
Bonartsev A.P., Bonartseva G.A., Reshetov I.V., Kirpichnikov M.P., Shaitan K.V. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate) Acta Nat. 2019;11:4–16. doi: 10.32607/20758251-2019-11-2-4-16. PubMed DOI PMC
Levett I., Pratt S., Donose B.C., Brackin R., Pratt C., Redding M., Laycock B. Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. J. Agric. Food Chem. 2019;67:2449–2458. doi: 10.1021/acs.jafc.8b05709. PubMed DOI
Doi Y., Kitamura S., Abe H. Microbial Synthesis and Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Macromolecules. 1995;28:4822–4828. doi: 10.1021/ma00118a007. DOI
Bhubalan K., Rathi D.-N., Abe H., Iwata T., Sudesh K. Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym. Degrad. Stabil. 2010;95:1436–1442. doi: 10.1016/j.polymdegradstab.2009.12.018. DOI
Bhubalan K., Lee W.-H., Loo C.-Y., Yamamoto T., Tsuge T., Doi Y., Sudesh K. Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stabil. 2008;93:17–23. doi: 10.1016/j.polymdegradstab.2007.11.004. DOI
Yamane T., Chen X.F., Ueda S. Growth-associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl. Environ. Microbiol. 1996;62:380–384. doi: 10.1128/AEM.62.2.380-384.1996. PubMed DOI PMC
Saito Y., Doi Y. Microbial Synthesis and Properties of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI
Zhou Q., Shi Z.-Y., Meng D.-C., Wu Q., Chen J.-C., Chen G.-Q. Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab. Eng. 2011;13:777–785. doi: 10.1016/j.ymben.2011.10.002. PubMed DOI
Chang H.M., Wang Z.H., Luo H.N., Xu M., Ren X.Y., Zheng G.X., Wu B.J., Zhang X.H., Lu X.Y., Chen F., et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz. J. Med. Biol. Res. 2014;47:533–539. doi: 10.1590/1414-431X20143930. PubMed DOI PMC
Choi J.I., Lee S.Y. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess. Eng. 1997;17:335–342. doi: 10.1007/s004490050394. DOI
Nonato R.V., Mantelatto P.E., Rossell C.E.V. Integrated production of biodegradable plastic, sugar and ethanol. Appl. Microbiol. Biotechnol. 2001;57:1–5. doi: 10.1007/s002530100732. PubMed DOI
Levett I., Birkett G., Davies N., Bell A., Langford A., Laycock B., Lant P., Pratt S. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—The case for thermophilic bioprocessing. J. Environ. Chem. Eng. 2016;4:3724–3733. doi: 10.1016/j.jece.2016.07.033. DOI
Jaeger K.-E., Steinbüchel A., Jendrossek D. Substrate Specificities of Bacterial Polyhydroxyalkanoate Depolymerases and Lipases: Bacterial Lipases Hydrolyze Poly(ω-Hydroxyalkanoates) Appl. Environ. Microbiol. 1995;8:3113–3118. doi: 10.1128/AEM.61.8.3113-3118.1995. PubMed DOI PMC
Fernandes M., Salvador A., Alves M.M., Vicente A.A. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym. Degrad. Stab. 2020;182:109408. doi: 10.1016/j.polymdegradstab.2020.109408. DOI
Kim J., Gupta N.S., Bezek L.B., Linn J., Bejagam K.K., Banerjee S., Dumont J.H., Nam S.Y., Kang H.W., Park C.H., et al. Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate-co-Polyhydroxyvalerate Films in Soil. Int. J. Mol. Sci. 2023;24:7638. doi: 10.3390/ijms24087638. PubMed DOI PMC
Davis R., Chandrashekar A., Shamala T.R. Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp. in the production of polyhydroxyalkanoates. Antonie Van. Leeuwenhoek. 2008;93:285–296. doi: 10.1007/s10482-007-9203-1. PubMed DOI
Rehm B.H.A., Krüger N., Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J. Biol. Chem. 1998;273:24044–24051. doi: 10.1074/jbc.273.37.24044. PubMed DOI
Maehara A., Ueda S., Nakano H., Yamane T. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J. Bacteriol. 1999;181:2914–2921. doi: 10.1128/JB.181.9.2914-2921.1999. PubMed DOI PMC
Pfeiffer D., Wahl A., Jendrossek D. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol. Microbiol. 2011;82:936–951. doi: 10.1111/j.1365-2958.2011.07869.x. PubMed DOI
Brigham C.J., Sinskey A.J. Polyhydroxybutyrate Production Enzymes: A Survey and Biological perspective. J. Sib. Fed. Univ. Biol. 2012;3:220–242.
Lu J., Takahashi A., Ueda S. 3-Hydroxybutyrate Oligomer Hydrolase and 3-Hydroxybutyrate Dehydrogenase Participate in Intracellular Polyhydroxybutyrate and Polyhydroxyvalerate Degradation in Paracoccus denitrificans. Appl. Environ. Microbiol. 2014;80:986–993. doi: 10.1128/AEM.03396-13. PubMed DOI PMC
Koskimäki J.J., Kajula M., Hokkanen J., Ihantola E.-L., Kim J.H., Hautajärvi H., Hankala E., Suokas M., Pohjanen J., Podolich O., et al. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat. Chem. Biol. 2016;12:332–338. doi: 10.1038/NCHEMBIO.2043. PubMed DOI
Seebach D., Brunner A., Bürger H.M., Schneider J., Reusch R.N. Isolation and 1H-NMR spectroscopic identification of poly(3-hydroxybutanoate) from prokaryotic and eukaryotic organisms—Determination of the absolute-configuration (R) of the monomeric unit 3-hydroxybutanoic acid from Escherichia coli and spinach. Eur. J. Biochem. 1994;224:317–328. doi: 10.1111/j.1432-1033.1994.00317.x. PubMed DOI
Reusch R.N., Sparrow A.W., Gardiner J. Transport of poly-β-hydroxybutyrate in human plasma. Biochim. Biophys. Acta. 1992;1123:33–40. doi: 10.1016/0005-2760(92)90168-U. PubMed DOI
Reusch R.M., Sadoff H.L. Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl. Acad. Sci. USA. 1988;85:4176–4180. doi: 10.1073/pnas.85.12.4176. PubMed DOI PMC
Elustondo P.A., Nichols M., Negoda A., Thirumaran A., Zakharian E., Robertson G.S., Pavlov E.V. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-Subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov. 2016;2:16070. doi: 10.1038/cddiscovery.2016.70. PubMed DOI PMC
Xian M., Fuerst M.M., Shabalin Y., Rosetta R.N. Sorting Signal of Escherichia coli OmpA is Modified by Oligo-(R)-3-Hydroxybutyrate. Biochim. Biophys. Acta Biomemb. 2007;1768:2660–2666. doi: 10.1016/j.bbamem.2007.06.019. PubMed DOI PMC
Reusch R.N., Shabalin O., Crumbaugh A., Wagner R., Schröder O., Wurm R. Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB) FEBS Lett. 2002;527:319–322. doi: 10.1016/S0014-5793(02)03236-2. PubMed DOI
Dai D., Reusch R.N. Poly-3-hydroxybutyrate Synthase from the Periplasm of Escherichia coli. Biochem. Biophys. Res. Commun. 2008;374:485–489. doi: 10.1016/j.bbrc.2008.07.043. PubMed DOI PMC
Reusch R.N. Physiological Importance of Poly-(R)-3-Hydroxybutyrates. Chem. Biodivers. 2009;9:2343–2366. doi: 10.1002/cbdv.201200278. PubMed DOI
Zuriani R., Vigneswari S., Azizan M.N.M., Majid M.I.A., Amirul A.A. A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol. Bioprocess Eng. 2013;18:472–478. doi: 10.1007/s12257-012-0607-z. DOI
Lakshman K., Shamala T.R. Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microb. Technol. 2006;39:1471–1475. doi: 10.1016/j.enzmictec.2006.03.037. DOI
Randriamahefa S., Renard E., Guerin P., Langlois V. Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by Pseudomonas grown on sodium octanoate. Biomacromolecules. 2003;4:1092–1097. doi: 10.1021/bm034104o. PubMed DOI
Isak I., Patel M., Riddell M., West M., Bowers T., Wijeyekoon S., Lloyd J. Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy: Comparison of different approaches. Lett. Appl. Microbiol. 2016;63:139–146. doi: 10.1111/lam.12605. PubMed DOI
Censi V., Saiano F., Bongiorno D., Indelicato S., Napoli A., Piazzese D. Bioplastics: A new analytical challenge. Front. Chem. 2022;10:987669. doi: 10.3389/fchem.2022.971792. PubMed DOI PMC
Hejazi P., Vasheghani-Farahani E., Yamini Y. Supercritical fluid disruption of Ralstonia eutropha for poly(beta-hydroxybutyrate) recovery. Biotechnol. Prog. 2003;19:1519–1523. doi: 10.1021/bp034010q. PubMed DOI
Aramvash A., Gholami-Banadkuki N., Moazzeni-Zavareh F., Hajizadeh-Turchi S. An Environmentally Friendly and Efficient Method for Extraction of PHB Biopolymer with Non-Halogenated Solvents. J. Microbiol. Biotechnol. 2015;25:1936–1943. doi: 10.4014/jmb.1505.05053. PubMed DOI
Riedel S.L., Brigham C.J., Budde C.F., Bader J., Rha C., Stah U., Sinskey A.J. Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol. Bioeng. 2013;110:461–470. doi: 10.1002/bit.24713. PubMed DOI
Yang Y.-H., Brigham C., Willis L., Rha C., Sinskey A. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs) Biotechnol. Lett. 2011;33:937–942. doi: 10.1007/s10529-010-0513-4. PubMed DOI
Xiong B., Fang Q., Wei T., Wang Z., Shen R., Cheng M., Zhou W. Chemical digestion method to promote activated sludge cell wall breaking and optimize the polyhydroxyalkanoate (PHA) extraction process. Int. J. Biol. Macromol. 2023;240:124369. doi: 10.1016/j.ijbiomac.2023.124369. PubMed DOI
Burniol-Figols A., Skiadas I., Daugaard A.E., Gavala H.N. Polyhydroxyalkanoate (PHA) purification through dilute aqueous ammonia digestion at elevated temperatures. J. Chem. Technol. Biotechnol. 2020;95:1519–1532. doi: 10.1002/jctb.6345. DOI
Page W., Cornish A. Growth of Azotobacter vinelandii Uwd in Fish Peptone Medium and Simplified Extraction of Poly-Beta-Hydroxybutyrate. Appl. Environ. Microbiol. 1993;59:4236–4244. doi: 10.1128/AEM.59.12.4236-4244.1993. PubMed DOI PMC
Meneses L., Esmail A., Matos M., Sevrin C., Grandfils C., Barreiros S., Reis M.A.M., Freitas F., Paiva A. Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering. 2022;9:302. doi: 10.3390/bioengineering9070302. PubMed DOI PMC
Rahman A., Linton E., Hatch A.D., Sims R.C., Miller C.D. Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J. Biol. Eng. 2013;7:24. doi: 10.1186/1754-1611-7-24. PubMed DOI PMC
Sabirova J.S., Ferrer M., Luensdorf H., Wray V., Kalscheuer R., Steinbuechel A., Timmis K.N., Golyshin P.N. Mutation in a “tesB-like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 2006;188:8452–8459. doi: 10.1128/JB.01321-06. PubMed DOI PMC
Wang J., Liu S., Huang J., Cui R., Xu Y., Song Z. Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environ. Technol. Innov. 2023;30:103069. doi: 10.1016/j.eti.2023.103069. DOI
Barati F., Asgarani E., Gharavi S., Soudi M.R. Considerable increase in Poly(3-hydroxybutyrate) production via phbC gene overexpression in Ralstonia eutropha PTCC 1615. BioImpacts. 2021;11:53–57. doi: 10.34172/bi.2021.07. PubMed DOI PMC
Kim S., Jang Y.J., Gong G., Lee S.-M., Um Y., Kim K.H., Ko J.K. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2. Microb. Cell. Fact. 2022;21:231. doi: 10.1186/s12934-022-01962-7. PubMed DOI PMC
Lin L., Chen J., Mitra R., Gao Q., Cheng F., Xu T., Zuo Z., Xiang H., Han J. Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun. Biol. 2021;4:1007. doi: 10.1038/s42003-021-02541-z. PubMed DOI PMC
Park S., Kim G.B., Kim H.U., Park S.J., Choi J. Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol. 2019;131:29–35. doi: 10.1016/j.ijbiomac.2019.03.044. PubMed DOI
Lin Z., Zhang Y., Yuan Q., Liu Q., Li Y., Wang Z., Ma H., Chen T., Zhao X. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb. Cell Factories. 2015;14:185. doi: 10.1186/s12934-015-0369-3. PubMed DOI PMC
Tadi S.R.R., Ravindran S.D., Balakrishnan R., Sivaprakasam S. Recombinant production of poly-(3-hydroxybutyrate) by Bacillus megaterium utilizing millet bran and rapeseed meal hydrolysates. Bioresour. Technol. 2021;326:124800. doi: 10.1016/j.biortech.2021.124800. PubMed DOI
Ling C., Qiao G.-Q., Shuai B.-W., Olavarria K., Yin J., Xiang R.-J., Song K.-N., Shen Y.-H., Guo Y., Chen G.-Q. Engineering NADH/NAD(+) ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA) Metab. Eng. 2018;49:275–286. doi: 10.1016/j.ymben.2018.09.007. PubMed DOI
Olaya-Abril A., Luque-Almagro V.M., Manso I., Gates A.J., Moreno-Vivian C., Richardson D.J., Roldán M.D. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiol. Lett. 2018;365:fnx251. doi: 10.1093/femsle/fnx251. PubMed DOI PMC
Hobmeier K., Loewe H., Liefeldt S., Kremling A., Pflueger-Grau K. A Nitrate-Blind, P. putida Strain Boosts PHA Production in a Synthetic Mixed Culture. Front. Bioeng. Biotechnol. 2020;8:486. doi: 10.3389/fbioe.2020.00486. PubMed DOI PMC
Arisaka S., Terahara N., Oikawa A., Osanai T. Increased polyhydroxybutyrate levels by ntcA overexpression in Synechocystis sp. PCC 6803. Algal. Res. 2019;41:101565. doi: 10.1016/j.algal.2019.101565. DOI
Wang Z., Zheng Y., Ji M., Zhang X., Wang H., Chen Y., Wu Q., Chen G.-Q. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb. Biotechnol. 2022;15:1586–1597. doi: 10.1111/1751-7915.13999. PubMed DOI PMC
Shen R., Ning Z.-Y., Lan Y.-X., Chen J.-C., Chen G.-Q. Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis. Metab. Eng. 2019;54:117–126. doi: 10.1016/j.ymben.2019.03.011. PubMed DOI
Fukui T., Mukoyama M., Orita I., Nakamura S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:7559–7568. doi: 10.1007/s00253-014-5831-3. PubMed DOI
Arikawa H., Matsumoto K., Fujiki T. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli. W. Appl. Microbiol. Biotechnol. 2017;101:7497–7507. doi: 10.1007/s00253-017-8470-7. PubMed DOI
Huo G., Zhu Y., Liu Q., Tao R., Diao N., Wang Z., Chen T. Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose-xylose feedstock. J. Chem. Technol. Biotechnol. 2017;92:2739–2745. doi: 10.1002/jctb.5298. DOI
Brojanigo S., Gronchi N., Cazzorla T., Wong T.S., Basaglia M., Favaro L., Casella S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Bioresour. Technol. 2022;347:126383. doi: 10.1016/j.biortech.2021.126383. PubMed DOI
Rodríguez J.E., Brojanigo S., Basaglia M., Favaro L., Casella S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator DSM 545. Sci. Total Environ. 2021;794:148754. doi: 10.1016/j.scitotenv.2021.148754. PubMed DOI
Jin C., Li J., Huang Z., Han X., Bao J. Engineering Corynebacterium glutamicum for synthesis of poly(3-hydroxybutyrate) from lignocellulose biomass. Biotechnol. Bioeng. 2022;119:1598–1613. doi: 10.1002/bit.28065. PubMed DOI
Chau T.H.T., Nguyen A.D., Lee E.Y. Engineering type I methanotrophic bacteria as novel platform for sustainable production of 3-hydroxybutyrate and biodegradable polyhydroxybutyrate from methane and xylose. Bioresour. Technol. 2022;363:127898. doi: 10.1016/j.biortech.2022.127898. PubMed DOI
Qin R., Zhu Y., Ai M., Jia X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front. Bioeng. Biotechnol. 2022;10:1023325. doi: 10.3389/fbioe.2022.1023325. PubMed DOI PMC
Tang R., Weng C., Peng X., Han Y. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Metab. Eng. 2020;61:11–23. doi: 10.1016/j.ymben.2020.04.009. PubMed DOI
Chen Y., Chen X.-Y., Du H.-T., Zhang X., Ma Y.-M., Chen J.-C., Ye J.-W., Jiang X.-R., Chen G.-Q. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) Metab. Eng. 2019;54:69–82. doi: 10.1016/j.ymben.2019.03.006. PubMed DOI
Schönheit P., Buckel W., Martin W.F. On the Origin of Heterotrophy. Trends. Microbiol. 2016;24:12–25. doi: 10.1016/j.tim.2015.10.003. PubMed DOI
De Marco P. Methylotrophy versus heterotrophy: A misconception. Microbiology. 2004;150:1606–1607. doi: 10.1099/mic.0.27165-0. PubMed DOI
Bar-On Y.M., Milo R. The global mass and average rate of rubisco. Proc. Natl. Acad. Sci. USA. 2019;116:4738–4743. doi: 10.1073/pnas.1816654116. PubMed DOI PMC
Yoon J., Oh M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresour. Technol. 2022;344:126307. doi: 10.1016/j.biortech.2021.126307. PubMed DOI
Kamravamanesh D., Kovacs T., Pflugl S., Druzhinina I., Kroll P., Lackner M., Herwig C. Increased poly-beta-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresour. Technol. 2018;266:34–44. doi: 10.1016/j.biortech.2018.06.057. PubMed DOI
Tharasirivat V., Jantaro S. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int. J. Mol. Sci. 2023;24:6415. doi: 10.3390/ijms24076415. PubMed DOI PMC
Taepucharoen K., Tarawat S., Puangcharoen M., Incharoensakdi A., Monshupanee T. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium. Bioresour. Technol. 2017;239:523–527. doi: 10.1016/j.biortech.2017.05.029. PubMed DOI
Tarawat S., Incharoensakdi A., Monshupanee T. Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: Improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. J. Appl. Phycol. 2020;32:1095–1102. doi: 10.1007/s10811-020-02040-4. DOI
Volova T.G., Kiselev E.G., Shishatskaya E.I., Zhila N.O., Boyandin A.N., Syrvacheva D.A., Vinogradova O.N., Kalacheva G.S., Vasiliev A.D., Peterson I.V. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour. Technol. 2013;146:215–222. doi: 10.1016/j.biortech.2013.07.070. PubMed DOI
Nangle S.N., Ziesack M., Buckley S., Trivedi D., Loh D.M., Nocera D.G., Silver P.A. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab. Eng. 2020;62:207–220. doi: 10.1016/j.ymben.2020.09.002. PubMed DOI
Buan N.R. Methanogens: Pushing the boundaries of biology. Emerg. Top. Life Sci. 2018;2:629–646. doi: 10.1042/ETLS20180031. PubMed DOI PMC
Daniel S., Hsu T., Dean S., Drake H. Characterization of the H2-Dependent and CO-Dependent Chemolithotrophic Potentials of the Acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 1990;172:4464–4471. doi: 10.1128/jb.172.8.4464-4471.1990. PubMed DOI PMC
Petushkova E.P., Tsygankov A.A. Acetate metabolism in the purple non-sulfur bacterium Rhodobacter capsulatus. Biochemistry. 2017;82:587–605. doi: 10.1134/S0006297917050078. PubMed DOI
Brady A.L., Sharp C.E., Grasby S.E., Dunfield P.F. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front. Microbiol. 2015;6:897. doi: 10.3389/fmicb.2015.00897. PubMed DOI PMC
Volbeda A., Fontecilla-Camps J.C. Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica. J. Biol. Inorg. Chem. 2004;9:525–532. doi: 10.1007/s00775-004-0565-9. PubMed DOI
Volova T., Zhila N., Shishatskaya E. Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium Seliberia carboxydohydrogena Z-1062. J. Ind Microbiol. Biotechnol. 2015;42:1377–1387. doi: 10.1007/s10295-015-1659-9. PubMed DOI
Do Y.S., Smeenk J., Broer K.M., Kisting C.J., Brown R., Heindel T.J., Bobik T.A., DiSpirito A.A. Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol. Bioeng. 2007;97:279–286. doi: 10.1002/bit.21226. PubMed DOI
Lemgruber R.S.P., Valgepea K., Tappel R., Behrendorff J.B., Palfreyman R.W., Plan M., Hodson M.P., Simpson S.D., Nielsen L.K., Kopke M., et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB) Metab. Eng. 2019;53:14–23. doi: 10.1016/j.ymben.2019.01.003. PubMed DOI
Valgepea K., Lemgruber R.S.P., Meaghan K., Palfreyman R.W., Abdalla T., Heijstra B.D., Behrendorff J.B., Tappel R., Kopke M., Simpson S.D., et al. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Syst. 2017;4:505–515. doi: 10.1016/j.cels.2017.04.008. PubMed DOI
Khider M.L.K., Brautaset T., Irla M. Methane monooxygenases: Central enzymes in methanotrophy with promising biotechnological applications. World J. Microbiol. Biotechnol. 2021;37:72. doi: 10.1007/s11274-021-03038-x. PubMed DOI PMC
Wendlandt K.D., Jechorek M., Helm J., Stottmeister U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 2001;86:127–133. doi: 10.1016/S0168-1656(00)00408-9. PubMed DOI
Salem R., Soliman M., Fergala A., Audette G.E., ElDyasti A. Screening for Methane Utilizing Mixed Communities with High Polyhydroxybutyrate (PHB) Production Capacity Using Different Design Approaches. Polymers. 2021;13:1579. doi: 10.3390/polym13101579. PubMed DOI PMC
Ghoddosi F., Golzar H., Yazdian F., Khosravi-Darani K., Vasheghani-Farahani E. Effect of carbon sources for PHB production in bubble column bioreactor: Emphasis on improvement of methane uptake. J. Environ. Chem. Eng. 2019;7:102978. doi: 10.1016/j.jece.2019.102978. DOI
Zuñiga C., Morales M., Revah S. Polyhydroxyalkanoates accumulation by Methylobacterium organophilum CZ-2 during methane degradation using citrate or propionate as cosubstrates. Bioresour. Technol. 2013;129:686–689. doi: 10.1016/j.biortech.2012.11.120. PubMed DOI
López J.C., Arnaiz E., Merchan L., Lebrero R., Munoz R. Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in anaerobic digestion biorefineries. Chem. Eng. J. 2018;333:529–536. doi: 10.1016/j.cej.2017.09.185. DOI
Fergala A., AlSayed A., Khattab S., Ramirez M., Eldyasti A. Development of Methane-Utilizing Mixed Cultures for the Production of Polyhydroxyalkanoates (PHAs) from Anaerobic Digester Sludge. Environ. Sci. Technol. 2018;52:12376–12387. doi: 10.1021/acs.est.8b04142. PubMed DOI
Myung J., Flanagan J.C.A., Waymouth R.M., Criddle C.S. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express. 2017;7:118. doi: 10.1186/s13568-017-0417-y. PubMed DOI PMC
Cal A.J., Sikkema W.D., Ponce M.I., Franqui-Villanueva D., Riiff T.J., Orts W.J., Pieja A.J., Lee C.C. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int. J. Biol. Macromol. 2016;87:302–307. doi: 10.1016/j.ijbiomac.2016.02.056. PubMed DOI
Olah G.A. Beyond oil and gas: The methanol economy. Angew. Chem.-Int. Edit. 2005;44:2636–2639. doi: 10.1002/anie.200462121. PubMed DOI
Mondal U., Yadav G.D. Methanol economy and net zero emissions: Critical analysis of catalytic processes, reactors and technologies. Green Chem. 2021;23:8361–8405. doi: 10.1039/d1gc02078a. DOI
Bourque D., Pomerleau Y., Groleau D. High cell density production of poly-beta-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: Production of high-molecular-mass PHB. Appl. Microbiol. Biotechnol. 1995;44:367–376. doi: 10.1007/BF00169931. DOI
Orita I., Nishikawa K., Nakamura S., Fukui T. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Appl. Microbiol. Biotechnol. 2014;98:3715–3725. doi: 10.1007/s00253-013-5490-9. PubMed DOI
Chang W., Yoon J., Oh M.-K. Production of Polyhydroxyalkanoates with the Fermentation of Methylorubrum extorquens Using Formate as a Carbon Substrate. Biotechnol. Bioprocess Eng. 2022;27:268–275. doi: 10.1007/s12257-021-0218-7. DOI
Stöckl M., Harms S., Dinges I., Dimitrova S., Holtmann D. From CO2 to Bioplastic—Coupling the Electrochemical CO2 Reduction with a Microbial Product Generation by Drop-in Electrolysis. ChemSusChem. 2020;13:4086–4093. doi: 10.1002/cssc.202001235. PubMed DOI PMC
Chen X., Cao Y., Li F., Tian Y., Song H. Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 2018;8:4429–4437. doi: 10.1021/acscatal.8b00226. DOI
Kourilova X., Novackova I., Koller M., Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresour. Technol. 2021;325:124704. doi: 10.1016/j.biortech.2021.124704. PubMed DOI
Park Y.-L., Bhatia S.K., Gurav R., Choi T.-R., Kim H.J., Song H.-S., Park J.-Y., Han Y.-H., Lee S.M., Park S.L., et al. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 2020;154:929–936. doi: 10.1016/j.ijbiomac.2020.03.129. PubMed DOI
Bhatia S.K., Yoon J.-J., Kim H.-J., Hong J.W., Hong Y.G., Song H.-S., Moon Y.-M., Jeon J.-M., Kim Y.-G., Yang Y.-H. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour. Technol. 2018;257:92–101. doi: 10.1016/j.biortech.2018.02.056. PubMed DOI
Amini M., Yousefi-Massumabad H., Younesi H., Abyar H., Bahramifar N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. J. Environ. Chem. Eng. 2020;8:103588. doi: 10.1016/j.jece.2019.103588. DOI
Dalsasso R.R., Pavan F.A., Bordignon S.E., Falcao de Aragdo G.M., Poletto P. Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process. Biochem. 2019;85:12–18. doi: 10.1016/j.procbio.2019.07.007. DOI
Lim S.W., Kansedo J., Tan I.S., Tan Y.H., Nandong J., Lam M.K., Ongkudon C.M. Microbial valorization of oil-based substrates for polyhydroxyalkanoates (PHA) production—Current strategies, status, and perspectives. Process. Biochem. 2023;130:715–733. doi: 10.1016/j.procbio.2023.05.013. DOI
Volova T., Sapozhnikova K., Zhila N. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int. J. Biol. Macromol. 2020;164:121–130. doi: 10.1016/j.ijbiomac.2020.07.095. PubMed DOI
Purama R.K., Al-Sabahi J.N., Sudesh K. Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3Hydroxybutyrate-co-3Hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Ind. Crop. Prod. 2008;119:83–92. doi: 10.1016/j.indcrop.2018.04.013. DOI
Santolin L., Waldburger S., Neubauer P., Riedel S.L. Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB-co-HHx) With Cupriavidus necator Re2058/pCB113. Front. Bioeng. Biotechnol. 2021;9:623890. doi: 10.3389/fbioe.2021.623890. PubMed DOI PMC
Schmid M.T., Sykacek E., O’Connor K., Omann M., Mundigler N., Neureiter M. Pilot scale production and evaluation of mechanical and thermal properties of P(3HB) from Bacillus megaterium cultivated on desugarized sugar beet molasses. J. Appl. Polym. Sci. 2022;139:e51503. doi: 10.1002/app.51503. DOI
Tu W.-L., Chu H.-K., Huang C.-M., Chen C.-H., Ou C.-M., Guo G.-L. Polyhydroxyalkanoate Production by Cupriavidus necator with Inedible Rice. BioResources. 2022;17:2202–2213. doi: 10.15376/biores.17.2.2202-2213. DOI
Saratale R.G., Cho S.K., Saratale G.D., Ghodake G.S., Bharagava R.N., Kim D.S., Nair S., Shin H.S. Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Bioresour. Technol. 2021;324:124673. doi: 10.1016/j.biortech.2021.124673. PubMed DOI
Lee S.M., Lee H.-J., Kim S.H., Suh M.J., Cho J.Y., Ham S., Jeon J.-M., Yoon J.-J., Bhatia S.K., Gurav R., et al. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB. Int. J. Biol. Macromol. 2021;181:410–417. doi: 10.1016/j.ijbiomac.2021.03.149. PubMed DOI
Kalaiyezhini D., Ramachandran K.B. Biosynthesis of Poly-3-Hydroxybutyrate (PHB) from Glycerol by Paracoccus denitrificans in a Batch Bioreactor: Effect of Process Variables. Prep. Biochem. Biotechnol. 2015;45:69–83. doi: 10.1080/10826068.2014.887582. PubMed DOI
Fauzi A.H.M., Chua A.S.M., Yoon L.W., Nittami T., Yeoh H.K. Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol. Process. Saf. Environ. Protect. 2019;122:200–208. doi: 10.1016/j.psep.2018.12.002. DOI
Tanadchangsaeng N., Yu J. Miscibility of natural polyhydroxyalkanoate blend with controllable material properties. J. Appl. Polym. Sci. 2013;129:2004–2016. doi: 10.1002/app.38906. DOI
Vijay R., Tarika K. Microbial Production of Polyhydroxyalkanoates (Phas) Using Kitchen Waste as an Inexpensive Carbon Source. Biosci. Biotechnol. Res. Asia. 2019;16:155–166. doi: 10.13005/bbra/2733. DOI
Das S., Majumder A., Shukla V., Suhazsini P., Radha P. Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J. Polym. Environ. 2018;26:4176–4187. doi: 10.1007/s10924-018-1288-2. DOI
Loan T.T., Trang D.T.Q., Huy P.Q., Ninh P.X., Van Thuoc D. A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep. 2022;33:e00700. doi: 10.1016/j.btre.2022.e00700. PubMed DOI PMC
Sangkharak K., Khaithongkaeo P., Chuaikhunupakarn T., Choonut A., Prasertsan P. The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Convers Biorefin. 2021;11:1651–1664. doi: 10.1007/s13399-020-00657-6. DOI
Thinagaran L., Sudesh K. Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste Biomass Valorization. 2019;10:709–720. doi: 10.1007/s12649-017-0078-8. DOI
Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI
Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI
Goff M., Ward P.G., O’Connor K.E. Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: A nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J. Biotechnol. 2007;132:283–286. doi: 10.1016/j.jbiotec.2007.03.016. PubMed DOI
Merli G., Becci A., Amato A., Beolchini F. Acetic acid bioproduction: The technological innovation change. Sci. Total. Environ. 2021;798:149292. doi: 10.1016/j.scitotenv.2021.149292. PubMed DOI
Christensen M., Jablonski P., Altermark B., Irgum K., Hansen H. High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741(T) and in silico analyses of the genus specific PhaC(2) polymerase variant. Microb. Cell. Fact. 2021;20:225. doi: 10.1186/s12934-021-01713-0. PubMed DOI PMC
Garcia-Gonzalez L., De Wever H. Acetic Acid as an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 as Feedstock. Appl. Sci. 2019;8:1416. doi: 10.3390/app8091416. DOI
Tao G.-B., Tian L., Pu N., Li Z.-J. Efficient production of poly-3-hydroxybutyrate from acetate and butyrate by halophilic bacteria Salinivibrio spp. TGB4 and TGB19. Int. J. Biol. Macromol. 2022;221:1365–1372. doi: 10.1016/j.ijbiomac.2022.09.141. PubMed DOI
Marang L., Jiang Y., van Loosdrecht M.C.M., Kleerebezem R. Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresour. Technol. 2013;142:232–239. doi: 10.1016/j.biortech.2013.05.031. PubMed DOI
Jeon J.-M., Brigham C.J., Kim Y.-H., Kim H.-J., Yi D.-H., Kim H., Rha C., Sinskey A.J., Yang Y.-H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 2014;98:5461–5469. doi: 10.1007/s00253-014-5617-7. PubMed DOI
Zhila N.O., Sapozhnikova K.Y., Kiselev E.G., Nemtsev I., Lukyanenko A., Shishatskaya E., Volova T.G. Biosynthesis and Properties of a P(3HB-co-3HV-co-4HV) Produced by Cupriavidus necator B-10646. Polymers. 2022;14:4226. doi: 10.3390/polym14194226. PubMed DOI PMC
Xiao N., Jiao N. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability. Appl. Environ. Microbiol. 2011;77:7445–7450. doi: 10.1128/AEM.05955-11. PubMed DOI PMC
Koch M., Bruckmoser J., Scholl J., Hauf W., Rieger B., Forchhammer K. Maximizing PHB content in Synechocystis sp. PCC 6803: A new metabolic engineering strategy based on the regulator PirC. Microb. Cell Fact. 2020;19:231. doi: 10.1186/s12934-020-01491-1. PubMed DOI PMC
Cortes O., Guerra-Blanco P., Chairez I., Poznyak T., Garcia-Pena E.I. Polymers, the Light at the End of Dark Fermentation: Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Photoheterotrophic Consortium. J. Polym. Environ. 2022;30:2392–2404. doi: 10.1007/s10924-021-02350-9. DOI
Brandl H., Gross R., Lenz R., Lloyd R., Fuller R. The Accumulation of Poly(3-Hydroxyalkanoates) in Rhodobacter sphaeroides. Arch. Microbiol. 1991;155:337–340. doi: 10.1007/BF00243452. DOI
Nemmour A., Inayat A., Janajreh I., Ghenai C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrog. 2023;48:29011–29033. doi: 10.1016/j.ijhydene.2023.03.240. DOI
NIST database of National Institute of Standards and Technology, U.S. Department of Commerce Webbook. [(accessed on 29 March 2024)]; Available online: https://webbook.nist.gov/
PubChem Database of National Library of Medicine, Nacional Center for Biotechnology Information. [(accessed on 29 March 2024)]; Available online: https://pubchem.ncbi.nlm.nih.gov/
Eberle U., Felderhoff M., Schueth F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chem.-Int. Edit. 2009;48:6608–6630. doi: 10.1002/anie.200806293. PubMed DOI