Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods

. 2024 May 13 ; 29 (10) : . [epub] 20240513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38792154

Grantová podpora
MUNI/A/1582/2023 Masaryk University

Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge. One potential solution is to modify heterotrophic PHA-producing strains to utilize alternative carbon sources. An alternative approach is to utilize methylotrophic or autotrophic strains. This article provides an overview of bacterial strains employed for PHA production, with a particular focus on those exhibiting the highest PHA content in dry cell mass. The strains are organized according to their carbon source utilization, encompassing autotrophy (utilizing CO2, CO) and methylotrophy (utilizing reduced single-carbon substrates) to heterotrophy (utilizing more traditional and alternative substrates).

Zobrazit více v PubMed

Ainali N.M., Kalaronis D., Evgenidou E., Kyzas G.Z., Bobori D.C., Kaloyianni M., Yang X., Bikiaris D.N., Lambropoulou D.A. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Sci. Total. Environ. 2022;832:155014. doi: 10.1016/j.scitotenv.2022.155014. PubMed DOI

Atarés L., Chiralt A., González-Martínez C., Vargas M. Production of Polyhydroxyalkanoates for Biodegradable Food Packaging Applications Using Haloferax mediterranei and Agrifood Wastes. Foods. 2024;13:950. doi: 10.3390/foods13060950. PubMed DOI PMC

Bulantekin Ö., Alp D. Food Processing and Packaging Technologies—Recent Advances. IntechOpen; London, UK: 2022. Perspective Chapter: Development of Food Packaging Films from Microorganism-Generated Polyhydroxyalkanoates. DOI

Bonartsev A.P., Bonartseva G.A., Reshetov I.V., Kirpichnikov M.P., Shaitan K.V. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate) Acta Nat. 2019;11:4–16. doi: 10.32607/20758251-2019-11-2-4-16. PubMed DOI PMC

Levett I., Pratt S., Donose B.C., Brackin R., Pratt C., Redding M., Laycock B. Understanding the Mobilization of a Nitrification Inhibitor from Novel Slow Release Pellets, Fabricated through Extrusion Processing with PHBV Biopolymer. J. Agric. Food Chem. 2019;67:2449–2458. doi: 10.1021/acs.jafc.8b05709. PubMed DOI

Doi Y., Kitamura S., Abe H. Microbial Synthesis and Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Macromolecules. 1995;28:4822–4828. doi: 10.1021/ma00118a007. DOI

Bhubalan K., Rathi D.-N., Abe H., Iwata T., Sudesh K. Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym. Degrad. Stabil. 2010;95:1436–1442. doi: 10.1016/j.polymdegradstab.2009.12.018. DOI

Bhubalan K., Lee W.-H., Loo C.-Y., Yamamoto T., Tsuge T., Doi Y., Sudesh K. Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stabil. 2008;93:17–23. doi: 10.1016/j.polymdegradstab.2007.11.004. DOI

Yamane T., Chen X.F., Ueda S. Growth-associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium, Paracoccus denitrificans. Appl. Environ. Microbiol. 1996;62:380–384. doi: 10.1128/AEM.62.2.380-384.1996. PubMed DOI PMC

Saito Y., Doi Y. Microbial Synthesis and Properties of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI

Zhou Q., Shi Z.-Y., Meng D.-C., Wu Q., Chen J.-C., Chen G.-Q. Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab. Eng. 2011;13:777–785. doi: 10.1016/j.ymben.2011.10.002. PubMed DOI

Chang H.M., Wang Z.H., Luo H.N., Xu M., Ren X.Y., Zheng G.X., Wu B.J., Zhang X.H., Lu X.Y., Chen F., et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz. J. Med. Biol. Res. 2014;47:533–539. doi: 10.1590/1414-431X20143930. PubMed DOI PMC

Choi J.I., Lee S.Y. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess. Eng. 1997;17:335–342. doi: 10.1007/s004490050394. DOI

Nonato R.V., Mantelatto P.E., Rossell C.E.V. Integrated production of biodegradable plastic, sugar and ethanol. Appl. Microbiol. Biotechnol. 2001;57:1–5. doi: 10.1007/s002530100732. PubMed DOI

Levett I., Birkett G., Davies N., Bell A., Langford A., Laycock B., Lant P., Pratt S. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—The case for thermophilic bioprocessing. J. Environ. Chem. Eng. 2016;4:3724–3733. doi: 10.1016/j.jece.2016.07.033. DOI

Jaeger K.-E., Steinbüchel A., Jendrossek D. Substrate Specificities of Bacterial Polyhydroxyalkanoate Depolymerases and Lipases: Bacterial Lipases Hydrolyze Poly(ω-Hydroxyalkanoates) Appl. Environ. Microbiol. 1995;8:3113–3118. doi: 10.1128/AEM.61.8.3113-3118.1995. PubMed DOI PMC

Fernandes M., Salvador A., Alves M.M., Vicente A.A. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym. Degrad. Stab. 2020;182:109408. doi: 10.1016/j.polymdegradstab.2020.109408. DOI

Kim J., Gupta N.S., Bezek L.B., Linn J., Bejagam K.K., Banerjee S., Dumont J.H., Nam S.Y., Kang H.W., Park C.H., et al. Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate-co-Polyhydroxyvalerate Films in Soil. Int. J. Mol. Sci. 2023;24:7638. doi: 10.3390/ijms24087638. PubMed DOI PMC

Davis R., Chandrashekar A., Shamala T.R. Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp. in the production of polyhydroxyalkanoates. Antonie Van. Leeuwenhoek. 2008;93:285–296. doi: 10.1007/s10482-007-9203-1. PubMed DOI

Rehm B.H.A., Krüger N., Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J. Biol. Chem. 1998;273:24044–24051. doi: 10.1074/jbc.273.37.24044. PubMed DOI

Maehara A., Ueda S., Nakano H., Yamane T. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J. Bacteriol. 1999;181:2914–2921. doi: 10.1128/JB.181.9.2914-2921.1999. PubMed DOI PMC

Pfeiffer D., Wahl A., Jendrossek D. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol. Microbiol. 2011;82:936–951. doi: 10.1111/j.1365-2958.2011.07869.x. PubMed DOI

Brigham C.J., Sinskey A.J. Polyhydroxybutyrate Production Enzymes: A Survey and Biological perspective. J. Sib. Fed. Univ. Biol. 2012;3:220–242.

Lu J., Takahashi A., Ueda S. 3-Hydroxybutyrate Oligomer Hydrolase and 3-Hydroxybutyrate Dehydrogenase Participate in Intracellular Polyhydroxybutyrate and Polyhydroxyvalerate Degradation in Paracoccus denitrificans. Appl. Environ. Microbiol. 2014;80:986–993. doi: 10.1128/AEM.03396-13. PubMed DOI PMC

Koskimäki J.J., Kajula M., Hokkanen J., Ihantola E.-L., Kim J.H., Hautajärvi H., Hankala E., Suokas M., Pohjanen J., Podolich O., et al. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat. Chem. Biol. 2016;12:332–338. doi: 10.1038/NCHEMBIO.2043. PubMed DOI

Seebach D., Brunner A., Bürger H.M., Schneider J., Reusch R.N. Isolation and 1H-NMR spectroscopic identification of poly(3-hydroxybutanoate) from prokaryotic and eukaryotic organisms—Determination of the absolute-configuration (R) of the monomeric unit 3-hydroxybutanoic acid from Escherichia coli and spinach. Eur. J. Biochem. 1994;224:317–328. doi: 10.1111/j.1432-1033.1994.00317.x. PubMed DOI

Reusch R.N., Sparrow A.W., Gardiner J. Transport of poly-β-hydroxybutyrate in human plasma. Biochim. Biophys. Acta. 1992;1123:33–40. doi: 10.1016/0005-2760(92)90168-U. PubMed DOI

Reusch R.M., Sadoff H.L. Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl. Acad. Sci. USA. 1988;85:4176–4180. doi: 10.1073/pnas.85.12.4176. PubMed DOI PMC

Elustondo P.A., Nichols M., Negoda A., Thirumaran A., Zakharian E., Robertson G.S., Pavlov E.V. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-Subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov. 2016;2:16070. doi: 10.1038/cddiscovery.2016.70. PubMed DOI PMC

Xian M., Fuerst M.M., Shabalin Y., Rosetta R.N. Sorting Signal of Escherichia coli OmpA is Modified by Oligo-(R)-3-Hydroxybutyrate. Biochim. Biophys. Acta Biomemb. 2007;1768:2660–2666. doi: 10.1016/j.bbamem.2007.06.019. PubMed DOI PMC

Reusch R.N., Shabalin O., Crumbaugh A., Wagner R., Schröder O., Wurm R. Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB) FEBS Lett. 2002;527:319–322. doi: 10.1016/S0014-5793(02)03236-2. PubMed DOI

Dai D., Reusch R.N. Poly-3-hydroxybutyrate Synthase from the Periplasm of Escherichia coli. Biochem. Biophys. Res. Commun. 2008;374:485–489. doi: 10.1016/j.bbrc.2008.07.043. PubMed DOI PMC

Reusch R.N. Physiological Importance of Poly-(R)-3-Hydroxybutyrates. Chem. Biodivers. 2009;9:2343–2366. doi: 10.1002/cbdv.201200278. PubMed DOI

Zuriani R., Vigneswari S., Azizan M.N.M., Majid M.I.A., Amirul A.A. A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol. Bioprocess Eng. 2013;18:472–478. doi: 10.1007/s12257-012-0607-z. DOI

Lakshman K., Shamala T.R. Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microb. Technol. 2006;39:1471–1475. doi: 10.1016/j.enzmictec.2006.03.037. DOI

Randriamahefa S., Renard E., Guerin P., Langlois V. Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by Pseudomonas grown on sodium octanoate. Biomacromolecules. 2003;4:1092–1097. doi: 10.1021/bm034104o. PubMed DOI

Isak I., Patel M., Riddell M., West M., Bowers T., Wijeyekoon S., Lloyd J. Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy: Comparison of different approaches. Lett. Appl. Microbiol. 2016;63:139–146. doi: 10.1111/lam.12605. PubMed DOI

Censi V., Saiano F., Bongiorno D., Indelicato S., Napoli A., Piazzese D. Bioplastics: A new analytical challenge. Front. Chem. 2022;10:987669. doi: 10.3389/fchem.2022.971792. PubMed DOI PMC

Hejazi P., Vasheghani-Farahani E., Yamini Y. Supercritical fluid disruption of Ralstonia eutropha for poly(beta-hydroxybutyrate) recovery. Biotechnol. Prog. 2003;19:1519–1523. doi: 10.1021/bp034010q. PubMed DOI

Aramvash A., Gholami-Banadkuki N., Moazzeni-Zavareh F., Hajizadeh-Turchi S. An Environmentally Friendly and Efficient Method for Extraction of PHB Biopolymer with Non-Halogenated Solvents. J. Microbiol. Biotechnol. 2015;25:1936–1943. doi: 10.4014/jmb.1505.05053. PubMed DOI

Riedel S.L., Brigham C.J., Budde C.F., Bader J., Rha C., Stah U., Sinskey A.J. Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol. Bioeng. 2013;110:461–470. doi: 10.1002/bit.24713. PubMed DOI

Yang Y.-H., Brigham C., Willis L., Rha C., Sinskey A. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs) Biotechnol. Lett. 2011;33:937–942. doi: 10.1007/s10529-010-0513-4. PubMed DOI

Xiong B., Fang Q., Wei T., Wang Z., Shen R., Cheng M., Zhou W. Chemical digestion method to promote activated sludge cell wall breaking and optimize the polyhydroxyalkanoate (PHA) extraction process. Int. J. Biol. Macromol. 2023;240:124369. doi: 10.1016/j.ijbiomac.2023.124369. PubMed DOI

Burniol-Figols A., Skiadas I., Daugaard A.E., Gavala H.N. Polyhydroxyalkanoate (PHA) purification through dilute aqueous ammonia digestion at elevated temperatures. J. Chem. Technol. Biotechnol. 2020;95:1519–1532. doi: 10.1002/jctb.6345. DOI

Page W., Cornish A. Growth of Azotobacter vinelandii Uwd in Fish Peptone Medium and Simplified Extraction of Poly-Beta-Hydroxybutyrate. Appl. Environ. Microbiol. 1993;59:4236–4244. doi: 10.1128/AEM.59.12.4236-4244.1993. PubMed DOI PMC

Meneses L., Esmail A., Matos M., Sevrin C., Grandfils C., Barreiros S., Reis M.A.M., Freitas F., Paiva A. Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering. 2022;9:302. doi: 10.3390/bioengineering9070302. PubMed DOI PMC

Rahman A., Linton E., Hatch A.D., Sims R.C., Miller C.D. Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J. Biol. Eng. 2013;7:24. doi: 10.1186/1754-1611-7-24. PubMed DOI PMC

Sabirova J.S., Ferrer M., Luensdorf H., Wray V., Kalscheuer R., Steinbuechel A., Timmis K.N., Golyshin P.N. Mutation in a “tesB-like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 2006;188:8452–8459. doi: 10.1128/JB.01321-06. PubMed DOI PMC

Wang J., Liu S., Huang J., Cui R., Xu Y., Song Z. Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environ. Technol. Innov. 2023;30:103069. doi: 10.1016/j.eti.2023.103069. DOI

Barati F., Asgarani E., Gharavi S., Soudi M.R. Considerable increase in Poly(3-hydroxybutyrate) production via phbC gene overexpression in Ralstonia eutropha PTCC 1615. BioImpacts. 2021;11:53–57. doi: 10.34172/bi.2021.07. PubMed DOI PMC

Kim S., Jang Y.J., Gong G., Lee S.-M., Um Y., Kim K.H., Ko J.K. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2. Microb. Cell. Fact. 2022;21:231. doi: 10.1186/s12934-022-01962-7. PubMed DOI PMC

Lin L., Chen J., Mitra R., Gao Q., Cheng F., Xu T., Zuo Z., Xiang H., Han J. Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Commun. Biol. 2021;4:1007. doi: 10.1038/s42003-021-02541-z. PubMed DOI PMC

Park S., Kim G.B., Kim H.U., Park S.J., Choi J. Enhanced production of poly-3-hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Int. J. Biol. Macromol. 2019;131:29–35. doi: 10.1016/j.ijbiomac.2019.03.044. PubMed DOI

Lin Z., Zhang Y., Yuan Q., Liu Q., Li Y., Wang Z., Ma H., Chen T., Zhao X. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb. Cell Factories. 2015;14:185. doi: 10.1186/s12934-015-0369-3. PubMed DOI PMC

Tadi S.R.R., Ravindran S.D., Balakrishnan R., Sivaprakasam S. Recombinant production of poly-(3-hydroxybutyrate) by Bacillus megaterium utilizing millet bran and rapeseed meal hydrolysates. Bioresour. Technol. 2021;326:124800. doi: 10.1016/j.biortech.2021.124800. PubMed DOI

Ling C., Qiao G.-Q., Shuai B.-W., Olavarria K., Yin J., Xiang R.-J., Song K.-N., Shen Y.-H., Guo Y., Chen G.-Q. Engineering NADH/NAD(+) ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA) Metab. Eng. 2018;49:275–286. doi: 10.1016/j.ymben.2018.09.007. PubMed DOI

Olaya-Abril A., Luque-Almagro V.M., Manso I., Gates A.J., Moreno-Vivian C., Richardson D.J., Roldán M.D. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiol. Lett. 2018;365:fnx251. doi: 10.1093/femsle/fnx251. PubMed DOI PMC

Hobmeier K., Loewe H., Liefeldt S., Kremling A., Pflueger-Grau K. A Nitrate-Blind, P. putida Strain Boosts PHA Production in a Synthetic Mixed Culture. Front. Bioeng. Biotechnol. 2020;8:486. doi: 10.3389/fbioe.2020.00486. PubMed DOI PMC

Arisaka S., Terahara N., Oikawa A., Osanai T. Increased polyhydroxybutyrate levels by ntcA overexpression in Synechocystis sp. PCC 6803. Algal. Res. 2019;41:101565. doi: 10.1016/j.algal.2019.101565. DOI

Wang Z., Zheng Y., Ji M., Zhang X., Wang H., Chen Y., Wu Q., Chen G.-Q. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb. Biotechnol. 2022;15:1586–1597. doi: 10.1111/1751-7915.13999. PubMed DOI PMC

Shen R., Ning Z.-Y., Lan Y.-X., Chen J.-C., Chen G.-Q. Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis. Metab. Eng. 2019;54:117–126. doi: 10.1016/j.ymben.2019.03.011. PubMed DOI

Fukui T., Mukoyama M., Orita I., Nakamura S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:7559–7568. doi: 10.1007/s00253-014-5831-3. PubMed DOI

Arikawa H., Matsumoto K., Fujiki T. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli. W. Appl. Microbiol. Biotechnol. 2017;101:7497–7507. doi: 10.1007/s00253-017-8470-7. PubMed DOI

Huo G., Zhu Y., Liu Q., Tao R., Diao N., Wang Z., Chen T. Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose-xylose feedstock. J. Chem. Technol. Biotechnol. 2017;92:2739–2745. doi: 10.1002/jctb.5298. DOI

Brojanigo S., Gronchi N., Cazzorla T., Wong T.S., Basaglia M., Favaro L., Casella S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Bioresour. Technol. 2022;347:126383. doi: 10.1016/j.biortech.2021.126383. PubMed DOI

Rodríguez J.E., Brojanigo S., Basaglia M., Favaro L., Casella S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator DSM 545. Sci. Total Environ. 2021;794:148754. doi: 10.1016/j.scitotenv.2021.148754. PubMed DOI

Jin C., Li J., Huang Z., Han X., Bao J. Engineering Corynebacterium glutamicum for synthesis of poly(3-hydroxybutyrate) from lignocellulose biomass. Biotechnol. Bioeng. 2022;119:1598–1613. doi: 10.1002/bit.28065. PubMed DOI

Chau T.H.T., Nguyen A.D., Lee E.Y. Engineering type I methanotrophic bacteria as novel platform for sustainable production of 3-hydroxybutyrate and biodegradable polyhydroxybutyrate from methane and xylose. Bioresour. Technol. 2022;363:127898. doi: 10.1016/j.biortech.2022.127898. PubMed DOI

Qin R., Zhu Y., Ai M., Jia X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front. Bioeng. Biotechnol. 2022;10:1023325. doi: 10.3389/fbioe.2022.1023325. PubMed DOI PMC

Tang R., Weng C., Peng X., Han Y. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Metab. Eng. 2020;61:11–23. doi: 10.1016/j.ymben.2020.04.009. PubMed DOI

Chen Y., Chen X.-Y., Du H.-T., Zhang X., Ma Y.-M., Chen J.-C., Ye J.-W., Jiang X.-R., Chen G.-Q. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) Metab. Eng. 2019;54:69–82. doi: 10.1016/j.ymben.2019.03.006. PubMed DOI

Schönheit P., Buckel W., Martin W.F. On the Origin of Heterotrophy. Trends. Microbiol. 2016;24:12–25. doi: 10.1016/j.tim.2015.10.003. PubMed DOI

De Marco P. Methylotrophy versus heterotrophy: A misconception. Microbiology. 2004;150:1606–1607. doi: 10.1099/mic.0.27165-0. PubMed DOI

Bar-On Y.M., Milo R. The global mass and average rate of rubisco. Proc. Natl. Acad. Sci. USA. 2019;116:4738–4743. doi: 10.1073/pnas.1816654116. PubMed DOI PMC

Yoon J., Oh M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresour. Technol. 2022;344:126307. doi: 10.1016/j.biortech.2021.126307. PubMed DOI

Kamravamanesh D., Kovacs T., Pflugl S., Druzhinina I., Kroll P., Lackner M., Herwig C. Increased poly-beta-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresour. Technol. 2018;266:34–44. doi: 10.1016/j.biortech.2018.06.057. PubMed DOI

Tharasirivat V., Jantaro S. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int. J. Mol. Sci. 2023;24:6415. doi: 10.3390/ijms24076415. PubMed DOI PMC

Taepucharoen K., Tarawat S., Puangcharoen M., Incharoensakdi A., Monshupanee T. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium. Bioresour. Technol. 2017;239:523–527. doi: 10.1016/j.biortech.2017.05.029. PubMed DOI

Tarawat S., Incharoensakdi A., Monshupanee T. Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: Improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. J. Appl. Phycol. 2020;32:1095–1102. doi: 10.1007/s10811-020-02040-4. DOI

Volova T.G., Kiselev E.G., Shishatskaya E.I., Zhila N.O., Boyandin A.N., Syrvacheva D.A., Vinogradova O.N., Kalacheva G.S., Vasiliev A.D., Peterson I.V. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour. Technol. 2013;146:215–222. doi: 10.1016/j.biortech.2013.07.070. PubMed DOI

Nangle S.N., Ziesack M., Buckley S., Trivedi D., Loh D.M., Nocera D.G., Silver P.A. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab. Eng. 2020;62:207–220. doi: 10.1016/j.ymben.2020.09.002. PubMed DOI

Buan N.R. Methanogens: Pushing the boundaries of biology. Emerg. Top. Life Sci. 2018;2:629–646. doi: 10.1042/ETLS20180031. PubMed DOI PMC

Daniel S., Hsu T., Dean S., Drake H. Characterization of the H2-Dependent and CO-Dependent Chemolithotrophic Potentials of the Acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 1990;172:4464–4471. doi: 10.1128/jb.172.8.4464-4471.1990. PubMed DOI PMC

Petushkova E.P., Tsygankov A.A. Acetate metabolism in the purple non-sulfur bacterium Rhodobacter capsulatus. Biochemistry. 2017;82:587–605. doi: 10.1134/S0006297917050078. PubMed DOI

Brady A.L., Sharp C.E., Grasby S.E., Dunfield P.F. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front. Microbiol. 2015;6:897. doi: 10.3389/fmicb.2015.00897. PubMed DOI PMC

Volbeda A., Fontecilla-Camps J.C. Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica. J. Biol. Inorg. Chem. 2004;9:525–532. doi: 10.1007/s00775-004-0565-9. PubMed DOI

Volova T., Zhila N., Shishatskaya E. Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium Seliberia carboxydohydrogena Z-1062. J. Ind Microbiol. Biotechnol. 2015;42:1377–1387. doi: 10.1007/s10295-015-1659-9. PubMed DOI

Do Y.S., Smeenk J., Broer K.M., Kisting C.J., Brown R., Heindel T.J., Bobik T.A., DiSpirito A.A. Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol. Bioeng. 2007;97:279–286. doi: 10.1002/bit.21226. PubMed DOI

Lemgruber R.S.P., Valgepea K., Tappel R., Behrendorff J.B., Palfreyman R.W., Plan M., Hodson M.P., Simpson S.D., Nielsen L.K., Kopke M., et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB) Metab. Eng. 2019;53:14–23. doi: 10.1016/j.ymben.2019.01.003. PubMed DOI

Valgepea K., Lemgruber R.S.P., Meaghan K., Palfreyman R.W., Abdalla T., Heijstra B.D., Behrendorff J.B., Tappel R., Kopke M., Simpson S.D., et al. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Syst. 2017;4:505–515. doi: 10.1016/j.cels.2017.04.008. PubMed DOI

Khider M.L.K., Brautaset T., Irla M. Methane monooxygenases: Central enzymes in methanotrophy with promising biotechnological applications. World J. Microbiol. Biotechnol. 2021;37:72. doi: 10.1007/s11274-021-03038-x. PubMed DOI PMC

Wendlandt K.D., Jechorek M., Helm J., Stottmeister U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 2001;86:127–133. doi: 10.1016/S0168-1656(00)00408-9. PubMed DOI

Salem R., Soliman M., Fergala A., Audette G.E., ElDyasti A. Screening for Methane Utilizing Mixed Communities with High Polyhydroxybutyrate (PHB) Production Capacity Using Different Design Approaches. Polymers. 2021;13:1579. doi: 10.3390/polym13101579. PubMed DOI PMC

Ghoddosi F., Golzar H., Yazdian F., Khosravi-Darani K., Vasheghani-Farahani E. Effect of carbon sources for PHB production in bubble column bioreactor: Emphasis on improvement of methane uptake. J. Environ. Chem. Eng. 2019;7:102978. doi: 10.1016/j.jece.2019.102978. DOI

Zuñiga C., Morales M., Revah S. Polyhydroxyalkanoates accumulation by Methylobacterium organophilum CZ-2 during methane degradation using citrate or propionate as cosubstrates. Bioresour. Technol. 2013;129:686–689. doi: 10.1016/j.biortech.2012.11.120. PubMed DOI

López J.C., Arnaiz E., Merchan L., Lebrero R., Munoz R. Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in anaerobic digestion biorefineries. Chem. Eng. J. 2018;333:529–536. doi: 10.1016/j.cej.2017.09.185. DOI

Fergala A., AlSayed A., Khattab S., Ramirez M., Eldyasti A. Development of Methane-Utilizing Mixed Cultures for the Production of Polyhydroxyalkanoates (PHAs) from Anaerobic Digester Sludge. Environ. Sci. Technol. 2018;52:12376–12387. doi: 10.1021/acs.est.8b04142. PubMed DOI

Myung J., Flanagan J.C.A., Waymouth R.M., Criddle C.S. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express. 2017;7:118. doi: 10.1186/s13568-017-0417-y. PubMed DOI PMC

Cal A.J., Sikkema W.D., Ponce M.I., Franqui-Villanueva D., Riiff T.J., Orts W.J., Pieja A.J., Lee C.C. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int. J. Biol. Macromol. 2016;87:302–307. doi: 10.1016/j.ijbiomac.2016.02.056. PubMed DOI

Olah G.A. Beyond oil and gas: The methanol economy. Angew. Chem.-Int. Edit. 2005;44:2636–2639. doi: 10.1002/anie.200462121. PubMed DOI

Mondal U., Yadav G.D. Methanol economy and net zero emissions: Critical analysis of catalytic processes, reactors and technologies. Green Chem. 2021;23:8361–8405. doi: 10.1039/d1gc02078a. DOI

Bourque D., Pomerleau Y., Groleau D. High cell density production of poly-beta-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: Production of high-molecular-mass PHB. Appl. Microbiol. Biotechnol. 1995;44:367–376. doi: 10.1007/BF00169931. DOI

Orita I., Nishikawa K., Nakamura S., Fukui T. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Appl. Microbiol. Biotechnol. 2014;98:3715–3725. doi: 10.1007/s00253-013-5490-9. PubMed DOI

Chang W., Yoon J., Oh M.-K. Production of Polyhydroxyalkanoates with the Fermentation of Methylorubrum extorquens Using Formate as a Carbon Substrate. Biotechnol. Bioprocess Eng. 2022;27:268–275. doi: 10.1007/s12257-021-0218-7. DOI

Stöckl M., Harms S., Dinges I., Dimitrova S., Holtmann D. From CO2 to Bioplastic—Coupling the Electrochemical CO2 Reduction with a Microbial Product Generation by Drop-in Electrolysis. ChemSusChem. 2020;13:4086–4093. doi: 10.1002/cssc.202001235. PubMed DOI PMC

Chen X., Cao Y., Li F., Tian Y., Song H. Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 2018;8:4429–4437. doi: 10.1021/acscatal.8b00226. DOI

Kourilova X., Novackova I., Koller M., Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. Bioresour. Technol. 2021;325:124704. doi: 10.1016/j.biortech.2021.124704. PubMed DOI

Park Y.-L., Bhatia S.K., Gurav R., Choi T.-R., Kim H.J., Song H.-S., Park J.-Y., Han Y.-H., Lee S.M., Park S.L., et al. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 2020;154:929–936. doi: 10.1016/j.ijbiomac.2020.03.129. PubMed DOI

Bhatia S.K., Yoon J.-J., Kim H.-J., Hong J.W., Hong Y.G., Song H.-S., Moon Y.-M., Jeon J.-M., Kim Y.-G., Yang Y.-H. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour. Technol. 2018;257:92–101. doi: 10.1016/j.biortech.2018.02.056. PubMed DOI

Amini M., Yousefi-Massumabad H., Younesi H., Abyar H., Bahramifar N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. J. Environ. Chem. Eng. 2020;8:103588. doi: 10.1016/j.jece.2019.103588. DOI

Dalsasso R.R., Pavan F.A., Bordignon S.E., Falcao de Aragdo G.M., Poletto P. Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process. Biochem. 2019;85:12–18. doi: 10.1016/j.procbio.2019.07.007. DOI

Lim S.W., Kansedo J., Tan I.S., Tan Y.H., Nandong J., Lam M.K., Ongkudon C.M. Microbial valorization of oil-based substrates for polyhydroxyalkanoates (PHA) production—Current strategies, status, and perspectives. Process. Biochem. 2023;130:715–733. doi: 10.1016/j.procbio.2023.05.013. DOI

Volova T., Sapozhnikova K., Zhila N. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int. J. Biol. Macromol. 2020;164:121–130. doi: 10.1016/j.ijbiomac.2020.07.095. PubMed DOI

Purama R.K., Al-Sabahi J.N., Sudesh K. Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3Hydroxybutyrate-co-3Hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Ind. Crop. Prod. 2008;119:83–92. doi: 10.1016/j.indcrop.2018.04.013. DOI

Santolin L., Waldburger S., Neubauer P., Riedel S.L. Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB-co-HHx) With Cupriavidus necator Re2058/pCB113. Front. Bioeng. Biotechnol. 2021;9:623890. doi: 10.3389/fbioe.2021.623890. PubMed DOI PMC

Schmid M.T., Sykacek E., O’Connor K., Omann M., Mundigler N., Neureiter M. Pilot scale production and evaluation of mechanical and thermal properties of P(3HB) from Bacillus megaterium cultivated on desugarized sugar beet molasses. J. Appl. Polym. Sci. 2022;139:e51503. doi: 10.1002/app.51503. DOI

Tu W.-L., Chu H.-K., Huang C.-M., Chen C.-H., Ou C.-M., Guo G.-L. Polyhydroxyalkanoate Production by Cupriavidus necator with Inedible Rice. BioResources. 2022;17:2202–2213. doi: 10.15376/biores.17.2.2202-2213. DOI

Saratale R.G., Cho S.K., Saratale G.D., Ghodake G.S., Bharagava R.N., Kim D.S., Nair S., Shin H.S. Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Bioresour. Technol. 2021;324:124673. doi: 10.1016/j.biortech.2021.124673. PubMed DOI

Lee S.M., Lee H.-J., Kim S.H., Suh M.J., Cho J.Y., Ham S., Jeon J.-M., Yoon J.-J., Bhatia S.K., Gurav R., et al. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB. Int. J. Biol. Macromol. 2021;181:410–417. doi: 10.1016/j.ijbiomac.2021.03.149. PubMed DOI

Kalaiyezhini D., Ramachandran K.B. Biosynthesis of Poly-3-Hydroxybutyrate (PHB) from Glycerol by Paracoccus denitrificans in a Batch Bioreactor: Effect of Process Variables. Prep. Biochem. Biotechnol. 2015;45:69–83. doi: 10.1080/10826068.2014.887582. PubMed DOI

Fauzi A.H.M., Chua A.S.M., Yoon L.W., Nittami T., Yeoh H.K. Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol. Process. Saf. Environ. Protect. 2019;122:200–208. doi: 10.1016/j.psep.2018.12.002. DOI

Tanadchangsaeng N., Yu J. Miscibility of natural polyhydroxyalkanoate blend with controllable material properties. J. Appl. Polym. Sci. 2013;129:2004–2016. doi: 10.1002/app.38906. DOI

Vijay R., Tarika K. Microbial Production of Polyhydroxyalkanoates (Phas) Using Kitchen Waste as an Inexpensive Carbon Source. Biosci. Biotechnol. Res. Asia. 2019;16:155–166. doi: 10.13005/bbra/2733. DOI

Das S., Majumder A., Shukla V., Suhazsini P., Radha P. Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillus megaterium NCIM 5472. J. Polym. Environ. 2018;26:4176–4187. doi: 10.1007/s10924-018-1288-2. DOI

Loan T.T., Trang D.T.Q., Huy P.Q., Ninh P.X., Van Thuoc D. A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep. 2022;33:e00700. doi: 10.1016/j.btre.2022.e00700. PubMed DOI PMC

Sangkharak K., Khaithongkaeo P., Chuaikhunupakarn T., Choonut A., Prasertsan P. The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Convers Biorefin. 2021;11:1651–1664. doi: 10.1007/s13399-020-00657-6. DOI

Thinagaran L., Sudesh K. Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste Biomass Valorization. 2019;10:709–720. doi: 10.1007/s12649-017-0078-8. DOI

Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI

Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI

Goff M., Ward P.G., O’Connor K.E. Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: A nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J. Biotechnol. 2007;132:283–286. doi: 10.1016/j.jbiotec.2007.03.016. PubMed DOI

Merli G., Becci A., Amato A., Beolchini F. Acetic acid bioproduction: The technological innovation change. Sci. Total. Environ. 2021;798:149292. doi: 10.1016/j.scitotenv.2021.149292. PubMed DOI

Christensen M., Jablonski P., Altermark B., Irgum K., Hansen H. High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741(T) and in silico analyses of the genus specific PhaC(2) polymerase variant. Microb. Cell. Fact. 2021;20:225. doi: 10.1186/s12934-021-01713-0. PubMed DOI PMC

Garcia-Gonzalez L., De Wever H. Acetic Acid as an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 as Feedstock. Appl. Sci. 2019;8:1416. doi: 10.3390/app8091416. DOI

Tao G.-B., Tian L., Pu N., Li Z.-J. Efficient production of poly-3-hydroxybutyrate from acetate and butyrate by halophilic bacteria Salinivibrio spp. TGB4 and TGB19. Int. J. Biol. Macromol. 2022;221:1365–1372. doi: 10.1016/j.ijbiomac.2022.09.141. PubMed DOI

Marang L., Jiang Y., van Loosdrecht M.C.M., Kleerebezem R. Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresour. Technol. 2013;142:232–239. doi: 10.1016/j.biortech.2013.05.031. PubMed DOI

Jeon J.-M., Brigham C.J., Kim Y.-H., Kim H.-J., Yi D.-H., Kim H., Rha C., Sinskey A.J., Yang Y.-H. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 2014;98:5461–5469. doi: 10.1007/s00253-014-5617-7. PubMed DOI

Zhila N.O., Sapozhnikova K.Y., Kiselev E.G., Nemtsev I., Lukyanenko A., Shishatskaya E., Volova T.G. Biosynthesis and Properties of a P(3HB-co-3HV-co-4HV) Produced by Cupriavidus necator B-10646. Polymers. 2022;14:4226. doi: 10.3390/polym14194226. PubMed DOI PMC

Xiao N., Jiao N. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability. Appl. Environ. Microbiol. 2011;77:7445–7450. doi: 10.1128/AEM.05955-11. PubMed DOI PMC

Koch M., Bruckmoser J., Scholl J., Hauf W., Rieger B., Forchhammer K. Maximizing PHB content in Synechocystis sp. PCC 6803: A new metabolic engineering strategy based on the regulator PirC. Microb. Cell Fact. 2020;19:231. doi: 10.1186/s12934-020-01491-1. PubMed DOI PMC

Cortes O., Guerra-Blanco P., Chairez I., Poznyak T., Garcia-Pena E.I. Polymers, the Light at the End of Dark Fermentation: Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Photoheterotrophic Consortium. J. Polym. Environ. 2022;30:2392–2404. doi: 10.1007/s10924-021-02350-9. DOI

Brandl H., Gross R., Lenz R., Lloyd R., Fuller R. The Accumulation of Poly(3-Hydroxyalkanoates) in Rhodobacter sphaeroides. Arch. Microbiol. 1991;155:337–340. doi: 10.1007/BF00243452. DOI

Nemmour A., Inayat A., Janajreh I., Ghenai C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrog. 2023;48:29011–29033. doi: 10.1016/j.ijhydene.2023.03.240. DOI

NIST database of National Institute of Standards and Technology, U.S. Department of Commerce Webbook. [(accessed on 29 March 2024)]; Available online: https://webbook.nist.gov/

PubChem Database of National Library of Medicine, Nacional Center for Biotechnology Information. [(accessed on 29 March 2024)]; Available online: https://pubchem.ncbi.nlm.nih.gov/

Eberle U., Felderhoff M., Schueth F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chem.-Int. Edit. 2009;48:6608–6630. doi: 10.1002/anie.200806293. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace