• This record comes from PubMed

Highly Soluble Drugs Directly Granulated by Water Dispersions of Insoluble Eudragit® Polymers as a Part of Hypromellose K100M Matrix Systems

. 2019 ; 2019 () : 8043415. [epub] 20190305

Language English Country United States Media electronic-ecollection

Document type Journal Article

The aim of the present study was to investigate the suitability of insoluble Eudragit® water dispersions (NE, NM, RL, and RS) for direct high-shear granulation of very soluble levetiracetam in order to decrease its burst effect from HPMC K100M matrices. The process characteristics, ss-NMR analysis, in vitro dissolution behavior, drug release mechanism and kinetics, texture profile analysis of the gel layer, and PCA analysis were explored. An application of water dispersions directly on levetiracetam was feasible only in a multistep process. All prepared formulations exhibited a 12-hour sustained release profile characterized by a reduced burst effect in a concentration-dependent manner. No effect on swelling extent of HPMC K100M was observed in the presence of Eudragit®. Contrary, higher rigidity of formed gel layer was observed using combination of HPMC and Eudragit®. Not only the type and concentration of Eudragit®, but also the presence of the surfactant in water dispersions played a key role in the dissolution characteristics. The dissolution profile close to zero-order kinetic was achieved from the sample containing levetiracetam directly granulated by the water dispersion of Eudragit® NE (5% of solid polymer per tablet) with a relatively high amount of surfactant nonoxynol 100 (1.5%). The initial burst release of drug was reduced to 8.04% in 30 min (a 64.2% decrease) while the total amount of the released drug was retained (97.02%).

See more in PubMed

Semdé R., Amighi K., Devleeschouwer M. J., Moës A. J. Studies of pectin HM/Eudragit® RL/Eudragit® NE film-coating formulations intended for colonic drug delivery. International Journal of Pharmaceutics. 2000;197(1-2):181–192. doi: 10.1016/S0378-5173(99)00467-6. PubMed DOI

Moustafine R. I., Kemenova V. A., Van Den Mooter G. Characteristics of interpolyelectrolyte complexes of eudragit E 100 with sodium alginate. International Journal of Pharmaceutics. 2005;294(1-2):113–120. doi: 10.1016/j.ijpharm.2005.01.029. PubMed DOI

Goole J., Deleuze P., Vanderbist F., Amighi K. New levodopa sustainedrelease floating minitablets coated with insoluble acrylic polymer. European Journal of Pharmaceutics and Biopharmaceutics. 2008;68(2):310–318. doi: 10.1016/j.ejpb.2007.06.017. PubMed DOI

Albers J., Alles R., Matthée K., Knop K., Nahrup J. S., Kleinebudde P. Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics. 2009;71(2):387–394. doi: 10.1016/j.ejpb.2008.10.002. PubMed DOI

Sauer D., Watts A. B., Coots L. B., Zheng W. C., McGinity J. W. Influence of polymeric subcoats on the drug release properties of tablets powder-coated with pre-plasticized Eudragit® L 100-55. International Journal of Pharmaceutics. 2009;367(1-2):20–28. doi: 10.1016/j.ijpharm.2008.09.020. PubMed DOI

Thakral S., Thakral N. K., Majumdar D. K. Eudragit®: A technology evaluation. Expert Opinion on Drug Delivery. 2013;10(1):131–149. doi: 10.1517/17425247.2013.736962. PubMed DOI

Lecomte F., Siepmann J., Walther M., MacRae R. J., Bodmeier R. Blends of enteric and GIT-insoluble polymers used for film coating: physicochemical characterization and drug release patterns. Journal of Controlled Release. 2003;89(3):457–471. doi: 10.1016/S0168-3659(03)00155-X. PubMed DOI

Schilling S. U., Bruce C. D., Shah N. H., Malick A. W., McGinity J. W. Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets. International Journal of Pharmaceutics. 2008;361(1-2):158–168. doi: 10.1016/j.ijpharm.2008.05.035. PubMed DOI

Rowe R. C., Sheskey P. J., Quinn M. E. Handbook of Pharmaceutical Excipients. 6th. Washington, DC, USA: American Pharmacists Association; 2009.

Patra C. N., Priya R., Swain S., Kumar Jena G., Panigrahi K. C., Ghose D. Pharmaceutical significance of eudragit: a review. Future Journal of Pharmaceutical Sciences. 2017;3(1):33–45. doi: 10.1016/j.fjps.2017.02.001. DOI

Nikam V. K., Kotade K. B., Gaware V. M., et al. Eudragit a versatile polymer: a review. Pharmacologyonline. 2011;1:152–164.

Ceballos A., Cirri M., Maestrelli F., Corti G., Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 2005;60(11-12):913–918. doi: 10.1016/j.farmac.2005.07.002. PubMed DOI

Rodriguez L., Caputo O., Cini M., Cavallari C., Grecchi R. In vitro release of theophylline from directly-compressed matrices containing methacrylic acid copolymers and/or dicalcium phosphate dihydrate. Farmaco. 1993;48(11):1597–1604.

Joshi M. Role of eudragit in targeted drug delivery. International Journal of Current Pharmaceutical Research. 2013;5:58–62.

Özgüney I., Ertan G., Güneri T. Dissolution characteristics of megaloporous tablets prepared with two kinds of matrix granules. Farmaco. 2004;59(7):549–555. doi: 10.1016/j.farmac.2004.03.011. PubMed DOI

Radhika P. R., Pala T. K., Sivakumar T. Formulation and evaluation of sustained release matrix tablets of glipizide. Iranian Journal of Pharmaceutical Research. 2009;5:205–214.

Małolepsza-Jarmołowska K., Kubis A. A., Hirnle L. Studies on gynaecological hydrophilic lactic acid preparations. part 5: the use of eudragit E-100 as lactic acid carrier in intravaginal tablets. Die Pharmazie. 2003;58(4):260–262. PubMed

Huang X., Brazel C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release. 2001;73(2-3):121–136. doi: 10.1016/S0168-3659(01)00248-6. PubMed DOI

Tiwari S. B., Rajabi-Siahboomi A. R. Modulation of drug release from hydrophilic matrices. Pharmaceutical Technology Europe. 2008;20(9):24–32.

Rajabi-Siahboomi A., Fegely K., Young C., Rege P., inventors; BPSI Holdings LLC assignee. Inventors; BPSI holdings LLC, assignee. drug compositions containing controlled release hypromellose matrices. United States patent US 20070048377A1, 2007.

Tatavarti A. S., Mehta K. A., Augsburger L. L., Hoag S. W. Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. Journal of Pharmaceutical Sciences. 2004;93(9):2319–2331. doi: 10.1002/jps.20129. PubMed DOI

Dias V., Gothoskar A., Fegely K., Rajabi-Siahboomi A. Modulation of drug release from hypromellose (HPMC) matrices: suppression of the initial burst effect. paper presented at The American association of pharmaceutical scientists annual meeting and exposition; San Antonio, TX, USA, 2006

Melia C. D. Hydrophilic matrix sustained release systems based on polysaccharide carriers. Critical Reviews™ in Therapeutic Drug Carrier Systems. 1991:395–421. PubMed

Uddin M. B., Chowdhury J. A., Azam K. R., Islam M. K. Investigation of the effects of different physicochemical parameters on in vitro release kinetics of theophylline from Eudragit NE 30 and Eudragit RS 30D matrix tablets. Journal of Pharmaceutical Sciences and Research. 2010;2(4):240–246.

Reddy K. R., Mutalik S., Reddy S. Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech. 2003;4:480–488. PubMed PMC

Krajacic A., Tucker I. G. Matrix formation in sustained release tablets: possible mechanism of dose dumping. International Journal of Pharmaceutics. 2003;251(1-2):67–78. doi: 10.1016/S0378-5173(02)00584-7. PubMed DOI

Tabasi S. H., Moolchandani V., Fahmy R., Hoag S. W. Sustained release dosage forms dissolution behavior prediction: a study of matrix tablets using NIR spectroscopy. International Journal of Pharmaceutics. 2009;382(1-2):1–6. doi: 10.1016/j.ijpharm.2009.07.029. PubMed DOI

Dvořáčková K., Kalėdaitė R., Gajdziok J., et al. The development of eudragit® NM-based controlled-release matrix tablets. Medicina. 2012;48(4):192–202. doi: 10.3390/medicina48040028. PubMed DOI

Tsai T., San Y.-P., Ho H.-O., Wu J.-S., Sheu M.-T. Film-forming polymer-granulated excipients as the matrix materials for controlled release dosage forms. Journal of Controlled Release. 1998;51(2-3):289–299. doi: 10.1016/S0168-3659(97)00183-1. PubMed DOI

Kubova K., Peček D., Hasserová K., et al. The influence of thermal treatment and type of insoluble poly(meth)acrylates on dissolution behavior of very soluble drug from hypromellose matrix tablets evaluated by multivariate data analysis. Pharmaceutical Development and Technology. 2017;22(2):206–217. doi: 10.1080/10837450.2016.1193191. PubMed DOI

Naiserová M., Kubová K., Vysloužil J., et al. Investigation of dissolution behavior HPMC/eudragit®/magnesium aluminometasilicate oral matrices based on NMR solid-state spectroscopy and dynamic characteristics of gel layer. AAPS PharmSciTech. 2018;19(2):681–692. doi: 10.1208/s12249-017-0870-6. PubMed DOI

Klančar U., Baumgartner S., Legen I., et al. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class i model drug: in vitro and in vivo studies. AAPS PharmSciTech. 2014;16(2):398–406. doi: 10.1208/s12249-014-0234-4. PubMed DOI PMC

Mantry S., Ghimirey N., Sharma S., Sharma R. Formulation design and in vitro characterization of sustained release tablet of nifedipine. UJPSR. 2016;2(1):27–34.

Atheequr M. R., Kumar B. P., Baha A. Development and evaluation of sustained release tablets of mebeverine hydrochloride. Indian Journal of Research in Pharmacy and Biotechnology. 2014;2(6):1455–1459.

Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nuclear Magnetic Resonance. 2000;16(3):151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Moore J. W., Flanner H. H. Mathematical comparison of dissolution profiles. International Journal of Pharmacology and Pharmaceutical Technology. 1996;20:64–74.

Costa P., Sousa Lobo J. M. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences. 2001;13(2):123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI

Higuchi T. Rate of release of medicament from ointment bases containing drugs in suspension. Journal of Pharmaceutical Sciences. 1961;50:874–875. doi: 10.1002/jps.2600501018. PubMed DOI

Korsmeyer R. W., Gurny R., Doelker E., Buri P., Peppas N. A. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 1983;15(1):25–35. doi: 10.1016/0378-5173(83)90064-9. DOI

Hixson A. W., Crowell J. H. Dependence of reaction velocity upon surface and agitation. Industrial & Engineering Chemistry. 1931;23(8):923–931. doi: 10.1021/ie50260a018. DOI

Baker R. W., Lonsdale H. K. Controlled release: mechanisms and rates. In: Taquary A. C., Lacey R. E., editors. Controlled Release of Biologically Active Agents. New York, USA: Plenum Press; 1974. pp. 15–71.

Li H., Hardy R. J., Gu X. Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech. 2008;9(2):437–443. doi: 10.1208/s12249-008-9060-x. PubMed DOI PMC

Pěček D., Štýbnarová M., Mašková E., Doležel P., Kejdušová M., Vetchý D. Využití analýzy textury při vývoji a hodnocení matricových tablet s prodlouženým uvolňováním léčiva. Chemické Listy. 2014;108:483–487.

Core R Team. R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. https://www.r-project.org/

Plazier-Vercammen J., Dauwe D., Brione p. p. Possibility of the use of Eudragit RS as a sustained-release matrix agent for the incorporation of watersoluble active compounds at high centages. STP pharma sciences. 1997;7:491–497.

Hentzschel C. M., Sakmann A., Leopold C. S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Development and Industrial Pharmacy. 2011;37(10):1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI

Neusilin. General Properties. Neusilin.com. 2017, http://www.neusilin.com/product/general_properties.php.

Kuksal A., Tiwary A. K., Jain N. K., Jain S. Formulation and in vitro, in vivo evaluation of extended- release matrix tablet of zidovudine: influence of combination of hydrophilic and hydrophobic matrix formers. AAPS PharmSciTech. 2006;7(1):E1–E9. PubMed PMC

de Souza T. P., Martínez-Pacheco R., Gómez-Amoza J. L., Petrovick P. R. Eudragit E as excipient for production of granules and tablets from phyllanthus niruri L spray-dried extract. AAPS PharmSciTech. 2007;8(2):E54–E60. PubMed

Policianova O., Brus J., Hruby M., et al. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR. Molecular Pharmaceutics. 2014;11(2):516–530. PubMed

Urbanova M., Gajdosova M., Steinhart M., Vetchy D., Brus J. Molecular-level control of ciclopirox olamine release from poly(ethylene oxide)-based mucoadhesive buccal films: exploration of structure–property relationships with solid-state NMR. Molecular Pharmaceutics. 2016;13(5):1551–1563. doi: 10.1021/acs.molpharmaceut.6b00035. PubMed DOI

Urbanova M., Sturcova A., Kredatusova J., Brus J. Structural insight into the physical stability of amorphous simvastatin dispersed in pHPMA: enhanced dynamics and local clustering as evidenced by solid-state NMR and Raman spectroscopy. International Journal of Pharmaceutics. 2015;478(2):464–475. doi: 10.1016/j.ijpharm.2014.12.007. PubMed DOI

Dempah K. E., Lubach J. W., Munson E. J. Characterization of the particle size and polydispersity of dicumarol using solid-state NMR spectroscopy. Molecular Pharmaceutics. 2017;14(3):856–865. doi: 10.1021/acs.molpharmaceut.6b01073. PubMed DOI

Ford J. L., Rubinstein M. H., Hogan J. E. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropyl methylcellulose matrices. International Journal of Pharmaceutics. 1985;24(2-3):327–338. doi: 10.1016/0378-5173(85)90031-6. DOI

Badawy S. I., Menning M. M., Gorko M. A., Gilbert L. G. Effect of process parameters on compressibility of granulation manufactured in a high-shear mixer. International Journal of Pharmaceutics. 2000;198:51–61. PubMed

Reimann C., Filzmoser P., Garret RG., Dutter R. Statistical Data Analysis Explained: Applied Environmental Statistics with R. Chichester, UK: John Wiley & Sons; 2008.

Karthikeyini.s C., Jayaprakash S., Abirami A., Halith S. M. Formulation and evaluation of aceclofenac sodium bilayer sustained release tablets. International Journal of ChemTech Research. 2009;1(4):1381–1385.

Azarmi S., Farid J., Nokhodchi A., Bahari-Saravi S. M., Valizadeh H. Thermal treating as a tool for sustained release of indomethacin from eudragit RS and RL matrices. International Journal of Pharmaceutics. 2002;246(1-2):171–177. doi: 10.1016/S0378-5173(02)00378-2. PubMed DOI

Khamanga S. M., Walker R. B. Drug transport mechanisms from carbopol/eudragit verapamil sustained-release tablets. Dissolution Technologies. 2011;18(3):30–38. doi: 10.14227/DT180311P30. DOI

Skalsky B., Petereit H. U. Chemistry and application properties of polymethacrylate systems. In: McGinity J. W., Felton L. A., editors. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. 3th. New York, NY, USA: Informa Healthcare; 2008. pp. 237–278.

Göpferich A., Lee G. The influence of endogenous surfactant on the structure and drug-release properties of eudragit NE30D-matrixes. Journal of Controlled Release. 1992;18(2):133–144. doi: 10.1016/0168-3659(92)90182-Q. DOI

Kojima H., Yoshihara K., Sawada T., Kondo H., Sako K. Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics. 2008;70(2):556–562. doi: 10.1016/j.ejpb.2008.05.032. PubMed DOI

Baviskar D., Sharma R., Jain D. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride. Pakistan Journal of Pharmaceutical Sciences. 2013;26(1):137–144. PubMed

Leskinen J. T. T., Hakulinen M. A., Kuosmanen M., Ketolainen J., Abrahmsén-Alami S., Lappalainen R. Monitoring of swelling of hydrophilic polymer matrix tablets by ultrasound techniques. International Journal of Pharmaceutics. 2011;404(1-2):142–147. doi: 10.1016/j.ijpharm.2010.11.026. PubMed DOI

Roni M. A., Kibria G., Jalil R. Formulation and in vitro evaluation of alfuzosin extended release tablets using directly compressible eudragit. Indian Journal of Pharmaceutical Sciences. 2009;71(3):252–258. doi: 10.4103/0250-474X.56019. PubMed DOI PMC

Mužíková J., Hávová Š., Ondrejček P., Komersová A., Lochař V. A study of tablets with a co-processed dry binder containing hypromellose and α-lactose monohydrate. Journal of Drug Delivery Science and Technology. 2014;24(1):100–104. doi: 10.1016/S1773-2247(14)50014-7. DOI

Yang L. Determination of continuous changes in the gel layer of poly(ethylene oxide) and HPMC tablets undergoing hydration: a texture analysis study. Pharmaceutical Research. 1998;15:1902–1906. PubMed

Mašková E., Kubová K., Vysloužil J., Pavloková S., Vetchý D. Influence of pH modulation on dynamic behavior of gel layer and release of weakly basic drug from HPMC/Wax matrices, controlled by acidic modifiers evaluated by multivariate data analysis. AAPS PharmSciTech. 2017;18(4):1242–1253. doi: 10.1208/s12249-016-0588-x. PubMed DOI

Ford J. L. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. In: Timmins P., Pygall S., Melia C., editors. Hydrophilic Matrix Tablets for Oral Controlled Release. Vol. 16. New York, NY, USA: Springer; 2014. pp. 17–51. (AAPS Advances in the Pharmaceutical Sciences Series). DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...