An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 EY006360
NEI NIH HHS - United States
R01 EY022917
NEI NIH HHS - United States
R01 EY032029
NEI NIH HHS - United States
T32 GM063483
NIGMS NIH HHS - United States
P30 EY001730
NEI NIH HHS - United States
R01 EY027711
NEI NIH HHS - United States
R01 EY014648
NEI NIH HHS - United States
R01 EY004864
NEI NIH HHS - United States
R01 EY026921
NEI NIH HHS - United States
R01 EY027077
NEI NIH HHS - United States
R01 GM124246
NIGMS NIH HHS - United States
PubMed
30936473
PubMed Central
PMC6573021
DOI
10.1038/s41556-019-0301-x
PII: 10.1038/s41556-019-0301-x
Knihovny.cz E-zdroje
- MeSH
- cévní endotel metabolismus MeSH
- dopamin metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- oči krevní zásobení enzymologie růst a vývoj metabolismus MeSH
- opsiny genetika metabolismus MeSH
- proteiny přenášející dopamin přes plazmatickou membránu antagonisté a inhibitory chemie metabolismus MeSH
- retinální gangliové buňky metabolismus účinky záření MeSH
- sklivec metabolismus MeSH
- světlo * MeSH
- threonin metabolismus MeSH
- transportéry VIAAT fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- dopamin MeSH
- membránové proteiny MeSH
- OPN5 protein, mouse MeSH Prohlížeč
- opsiny MeSH
- proteiny přenášející dopamin přes plazmatickou membránu MeSH
- Slc6a3 protein, mouse MeSH Prohlížeč
- threonin MeSH
- transportéry VIAAT MeSH
- Viaat protein, mouse MeSH Prohlížeč
During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.
Biological Structure University of Washington Medical School Seattle WA USA
Center for Chronobiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
Clinical Engineering Cincinnati Children's Hospital Medical Center Cincinnati OH USA
Department of Ophthalmology Emory University School of Medicine Atlanta GA USA
Department of Ophthalmology University of Cincinnati College of Medicine Cincinnati OH USA
Department of Ophthalmology University of Washington Medical School Seattle WA USA
Division of Developmental Biology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
Ophthalmic Research Cole Eye Institute Cleveland Clinic Cleveland OH USA
Pathology University of Washington Medical School Seattle WA USA
Pharmacology Emory University School of Medicine Atlanta GA USA
Zobrazit více v PubMed
Schiller PH & Tehovnik EJ Vision and the Visual System. (Oxford University Press, 2015).
Bass J & Takahashi JS Circadian integration of metabolism and energetics. Science 330, 1349–54 (2010). PubMed PMC
Partch CL, Green CB & Takahashi JS Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24, 90–99 (2014). PubMed PMC
Terakita A & Nagata T Functional Properties of Opsins and their Contribution to Light-Sensing Physiology. Zoolog. Sci 31, 653–659 (2014). PubMed
Shichida Y & Matsuyama T Evolution of opsins and phototransduction. Philos. Trans. R. Soc. B Biol. Sci 364, 2881–2895 (2009). PubMed PMC
Nathans J Rhodopsin: structure, function, and genetics. Biochemistry 31, 4923–31 (1992). PubMed
Palczewski K & Orban T From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors. Annu. Rev. Neurosci 36, 139–164 (2013). PubMed PMC
Provencio I, Rollag MD & Castrucci AM Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493 (2002). PubMed
Hattar S, Liao HW, Takao M, Berson DM & Yau KW Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science (80-. ). 295, 1065–1070 (2002). PubMed PMC
Berson DM, Dunn FA & Takao M Phototransduction By Retinal Ganglion Cells That Set The Circadian Clock. Science (80-. ). 295, 1070–1073 (2002). PubMed
Yamashita T et al. Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J Biol Chem 289, 3991–4000 (2014). PubMed PMC
Sato K et al. Two UV-sensitive photoreceptor proteins, Opn5m and Opn5m2 in ray-finned fish with distinct molecular properties and broad distribution in the retina and brain. PLoS One 11, (2016). PubMed PMC
Yamashita T et al. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A 107, 22084–22089 (2010). PubMed PMC
Kojima D et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One 6, e26388 (2011). PubMed PMC
Tarttelin EE, Bellingham J, Hankins MW, Foster RG & Lucas RJ Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 554, 410–416 (2003). PubMed
Nakane Y et al. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci 107, 15264–15268 (2010). PubMed PMC
Ota W, Nakane Y, Hattar S & Yoshimura T Impaired Circadian Photoentrainment in Opn5-Null Mice. iScience 6, 299–305 (2018). PubMed PMC
Buhr ED et al. Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc. Natl. Acad. Sci. U. S. A 112, (2015). PubMed PMC
Joyner AL & Zervas M Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev. Dyn 235, 2376–85 (2006). PubMed
Cai D, Cohen KB, Luo T, Lichtman JW & Sanes JR Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013). PubMed
Rodriguez AR, de Sevilla Muller LP & Brecha NC The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522, 1411–1443 (2014). PubMed PMC
Frielingsdorf H et al. Variant brain-derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Ann N Y Acad Sci 1208, 150–157 PubMed PMC
Rao S et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243–246 (2013). PubMed PMC
Lobov IBB et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005). PubMed PMC
Ferrara N Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25, 581–611 (2004). PubMed
Dickson PW & Briggs GD Tyrosine hydroxylase. Regulation by feedback inhibition and phosphorylation. Adv. Pharmacol 68, 13–21 (2013). PubMed
Basu S et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med 7, 569–574 (2001). PubMed
Sinha S et al. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J Cell Sci 122, 3385–3392 (2009). PubMed PMC
Wulle I & Schnitzer J Distribution and morphology of tyrosine hydroxylase-immunoreactive neurons in the developing mouse retina. Brain Res Dev Brain Res 48, 59–72 (1989). PubMed
Witkovsky P, Nicholson C, Rice ME, Bohmaker K & Meller E Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc. Natl. Acad. Sci. U. S. A 90, 5667–71 (1993). PubMed PMC
Newkirk GS, Hoon M, Wong RO & Detwiler PB Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J. Neurophysiol 110, 536–552 (2013). PubMed PMC
Cameron MA et al. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29, 761–767 (2009). PubMed PMC
Iuvone PM, Galli CL, Garrison-Gund CK & Neff NH Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science (80-. ). 202, 901–902 (1978). PubMed
Witkovsky P, Gabriel R, Haycock JW & Meller E Influence of light and neural circuitry on tyrosine hydroxylase phosphorylation in the rat retina. J Chem Neuroanat 19, 105–116 (2000). PubMed
Jackson CR, Capozzi M, Dai H & McMahon DG Circadian Perinatal Photoperiod Has Enduring Effects on Retinal Dopamine and Visual Function. J. Neurosci 34, 4627–4633 (2014). PubMed PMC
Vaughan RA & Foster JD Mechanisms of dopamine transporter regulation in normal and disease states. Trends in Pharmacological Sciences 34, 489–496 (2013). PubMed PMC
Foster JD et al. Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. J. Biol. Chem 287, 29702–29712 (2012). PubMed PMC
Rothman RB et al. GBR12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol. Biochem. Behav 40, 387–397 (1991). PubMed
Rao S et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, (2013). PubMed PMC
Benoit-Marand M, Ballion B, Borrelli E, Boraud T & Gonon F Inhibition of dopamine uptake by D2 antagonists: An in vivo study. J. Neurochem 116, 449–458 (2011). PubMed
Hack I, Peichl L & Brandstätter JH An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl. Acad. Sci. U. S. A 96, 14130–5 (1999). PubMed PMC
YANG X Characterization of receptors for glutamate and GABA in retinal neurons. Prog. Neurobiol 73, 127–150 (2004). PubMed
Delwig A et al. Glutamatergic neurotransmission from melanopsin retinal ganglion cells is required for neonatal photoaversion but not adult pupillary light reflex. PLoS One 8, e83974 (2013). PubMed PMC
Johnson J et al. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neurosci 23, 518–529 (2003). PubMed PMC
Hirano AA et al. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. eneuro 3, ENEURO.0148–15.2016 (2016). PubMed PMC
Johnson J et al. Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 27, 7245–7255 (2007). PubMed PMC
Rowan S & Cepko CL Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol 271, 388–402 (2004). PubMed
Jackson CR et al. Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32, 9359–9368 (2012). PubMed PMC
Klimova L, Lachova J, Machon O, Sedlacek R & Kozmik Z Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8, e63029 (2013). PubMed PMC
Setler PE, Sarau HM, Zirkle CL & Saunders HL The central effects of a novel dopamine agonist. Eur J Pharmacol 50, 419–430 (1978). PubMed
Bhattacharya R et al. The neurotransmitter dopamine modulates vascular permeability in the endothelium. J Mol Signal 3, 14 (2008). PubMed PMC
Shatz CJ Emergence of order in visual system development. in Journal of Physiology Paris 90, 141–150 (1996). PubMed
Wong ROL RETINAL WAVES AND VISUAL SYSTEM DEVELOPMENT. Annu. Rev. Neurosci 22, 29–47 (1999). PubMed
Arroyo DA, Kirkby LA & Feller MB Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J. Neurosci 36, 6892–6905 (2016). PubMed PMC
Hussein MA et al. Evaluating the association of autonomic drug use to the development and severity of retinopathy of prematurity. J AAPOS 18, 332–337 (2014). PubMed
Michael Iuvone P Is retinal dopamine involved in the loss of visual function in retinopathy of prematurity? Investigative Ophthalmology and Visual Science 57, 3380 (2016). PubMed
Yang MBB, Rao S, Copenhagen DRR & Lang RAA Length of day during early gestation as a predictor of risk for severe retinopathy of prematurity. Ophthalmology 120, 2706–2713 (2013). PubMed PMC
Torii H et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine 15, 210–219 (2017). PubMed PMC
Zhou X, Pardue MT, Iuvone PM & Qu J Dopamine signaling and myopia development: What are the key challenges. Progress in Retinal and Eye Research 61, 60–71 (2017). PubMed PMC
Claxton S et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008). PubMed
Nelson AB et al. A Comparison of Striatal-Dependent Behaviors in Wild-Type and Hemizygous Drd1a and Drd2 BAC Transgenic Mice. J. Neurosci 32, 9119–9123 (2012). PubMed PMC
Panda S et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science (80-. ). 301, 525–527 (2003). PubMed