Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele

. 2021 Jun ; 529 (8) : 1926-1953. [epub] 20201110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33135183

Grantová podpora
DP2 EY026770 NEI NIH HHS - United States
F31 EY030344 NEI NIH HHS - United States
F31 EY030737 NEI NIH HHS - United States
ZIA EY000504 Intramural NIH HHS - United States

Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.

Zobrazit více v PubMed

Amthor FR, Oyster CW, & Takahashi ES (1983). Quantitative morphology of rabbit retinal ganglion cells. Proc R Soc Lond B Biol Sci, 217(1208), 341–355. PubMed

Amthor FR, Takahashi ES, & Oyster CW (1989a). Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol, 280(1), 97–121. doi:10.1002/cne.902800108 PubMed DOI

Amthor FR, Takahashi ES, & Oyster CW (1989b). Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J Comp Neurol, 280(1), 72–96. doi:10.1002/cne.902800107 PubMed DOI

Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, … Stewart AF (2009). Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech, 2(9–10), 508–515. doi:10.1242/dmm.003087 PubMed DOI

Badea TC, Cahill H, Ecker J, Hattar S, & Nathans J (2009). Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron, 61(6), 852–864. doi:10.1016/j.neuron.2009.01.020 PubMed DOI PMC

Badea TC, Hua ZL, Smallwood PM, Williams J, Rotolo T, Ye X, & Nathans J (2009). New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS One, 4(11), e7859. doi:10.1371/journal.pone.0007859 PubMed DOI PMC

Badea TC, & Nathans J (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol, 480(4), 331–351. doi:10.1002/cne.20304 PubMed DOI

Badea TC, & Nathans J (2011a). Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: Analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Research, 51(2), 269–279. doi:10.1016/j.visres.2010.08.039 PubMed DOI PMC

Badea TC, & Nathans J (2011b). Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res, 51(2), 269–279. doi:S0042–6989(10)00434–7 [pii] 10.1016/j.visres.2010.08.039 PubMed DOI PMC

Badea TC, Wang Y, & Nathans J (2003). A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci, 23(6), 2314–2322. doi:23/6/2314 [pii] PubMed PMC

Badea TC, Williams J, Smallwood P, Shi M, Motajo O, & Nathans J (2012). Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci, 32(3), 995–1007. doi:32/3/995 [pii] 10.1523/JNEUROSCI.4755-11.2012 PubMed DOI PMC

Baden T, Berens P, Franke K, Roman Roson M, Bethge M, & Euler T (2016). The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586), 345–350. doi:10.1038/nature16468 PubMed DOI PMC

Bae JA, Mu S, Kim JS, Turner NL, Tartavull I, Kemnitz N, … Eyewirers. (2018). Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology. Cell, 173(5), 1293–1306 e1219. doi:10.1016/j.cell.2018.04.040 PubMed DOI PMC

Basso MA, & May PJ (2017). Circuits for Action and Cognition: A View from the Superior Colliculus. Annu Rev Vis Sci, 3, 197–226. doi:10.1146/annurev-vision-102016-061234 PubMed DOI PMC

Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, & Schenberg LC (2005). Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience, 133(4), 873–892. doi:10.1016/j.neuroscience.2005.03.012 PubMed DOI

Blanchard DC, Blanchard RJ, Lee MC, & Williams G (1981). Taming in the wild Norway rat following lesions in the basal ganglia. Physiol Behav, 27(6), 995–1000. doi:10.1016/0031-9384(81)90360-7 PubMed DOI

Bleckert A, Schwartz GW, Turner MH, Rieke F, & Wong RO (2014). Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol, 24(3), 310–315. doi:10.1016/j.cub.2013.12.020 PubMed DOI PMC

Boycott BB, & Wassle H (1974). The morphological types of ganglion cells of the domestic cat’s retina. J Physiol, 240(2), 397–419. PubMed PMC

Cang J, Savier E, Barchini J, & Liu X (2018). Visual Function, Organization, and Development of the Mouse Superior Colliculus. Annu Rev Vis Sci, 4, 239–262. doi:10.1146/annurev-vision-091517-034142 PubMed DOI

Canteras NS, & Goto M (1999a). Connections of the precommissural nucleus. J Comp Neurol, 408(1), 23–45. doi:10.1002/(sici)1096-9861(19990524)408:1<23::aid-cne3>3.0.co;2-j PubMed DOI

Canteras NS, & Goto M (1999b). Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. Neuroreport, 10(2), 413–418. doi:10.1097/00001756-199902050-00037 PubMed DOI

Chiang CY, Dostrovsky JO, & Sessle BJ (1991). Periaqueductal gray matter and nucleus raphe magnus involvement in anterior pretectal nucleus-induced inhibition of jaw-opening reflex in rats. Brain Res, 544(1), 71–78. doi:10.1016/0006-8993(91)90886-z PubMed DOI

Chuang K, Nguyen E, Sergeev Y, & Badea TC (2016). Novel heterotypic rox sites for combinatorial dre recombination strategies. G3: Genes, Genomes, Genetics, 6(3), 559–571. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959562824&partnerID=40&md5=77d173da2219f60f1e02fc257975051b PubMed PMC

Clemente-Perez A, Makinson SR, Higashikubo B, Brovarney S, Cho FS, Urry A, … Paz JT (2017). Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Rep, 19(10), 2130–2142. doi:10.1016/j.celrep.2017.05.044 PubMed DOI PMC

Coleman KA, & Mitrofanis J (1996). Organization of the visual reticular thalamic nucleus of the rat. Eur J Neurosci, 8(2), 388–404. doi:10.1111/j.1460-9568.1996.tb01222.x PubMed DOI

Coombs J, van der List D, Wang G-Y, & Chalupa LM (2006). Morphological properties of mouse retinal ganglion cells. Neuroscience, 140(1), 123–136. doi:10.1016/j.neuroscience.2006.02.079 PubMed DOI

Crick F (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A, 81(14), 4586–4590. doi:10.1073/pnas.81.14.4586 PubMed DOI PMC

Dacey DM, Peterson BB, Robinson FR, & Gamlin PD (2003). Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron, 37(1), 15–27. PubMed

Deng H, Xiao X, & Wang Z (2016). Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors. J Neurosci, 36(29), 7580–7588. doi:10.1523/jneurosci.4425-15.2016 PubMed DOI PMC

Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL, Berson DM, & Huberman AD (2013). Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci, 33(45), 17797–17813. doi:10.1523/JNEUROSCI.2778-13.2013 PubMed DOI PMC

Doykos TK, Gilmer JI, Person AL, & Felsen G (2020). Monosynaptic inputs to specific cell types of the intermediate and deep layers of the superior colliculus. J Comp Neurol. doi:10.1002/cne.24888 PubMed DOI PMC

Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, … Rosenfeld MG (1996). Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 381(6583), 603–606. doi:10.1038/381603a0 PubMed DOI

Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, & Branco T (2018). A synaptic threshold mechanism for computing escape decisions. Nature, 558(7711), 590–594. doi:10.1038/s41586-018-0244-6 PubMed DOI PMC

Florez-Paz D, Bali KK, Kuner R, & Gomis A (2016). A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep, 6, 25923. doi:10.1038/srep25923 PubMed DOI PMC

Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y, … Gross CT (2017). Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci, 20(2), 260–270. doi:10.1038/nn.4470 PubMed DOI PMC

Genaro K, Fabris D, & Prado WA (2019). The antinociceptive effect of anterior pretectal nucleus stimulation is mediated by distinct neurotransmitter mechanisms in descending pain pathways. Brain Res Bull, 146, 164–170. doi:10.1016/j.brainresbull.2019.01.003 PubMed DOI

Genaro K, & Prado WA (2016). Neural Correlates of the Antinociceptive Effects of Stimulating the Anterior Pretectal Nucleus in Rats. J Pain, 17(11), 1156–1163. doi:10.1016/j.jpain.2016.07.002 PubMed DOI

George DT, Ameli R, & Koob GF (2019). Periaqueductal Gray Sheds Light on Dark Areas of Psychopathology. Trends Neurosci, 42(5), 349–360. doi:10.1016/j.tins.2019.03.004 PubMed DOI

Glueckert R, Bitsche M, Miller JM, Zhu Y, Prieskorn DM, Altschuler RA, & Schrott-Fischer A (2008). Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol, 507(4), 1602–1621. doi:10.1002/cne.21619 PubMed DOI

González-Hernández T, Barroso-Chinea P, Pérez de la Cruz MA, Valera P, Dopico JG, & Rodríguez M (2002). Response of GABAergic cells in the deep mesencephalic nucleus to dopaminergic cell degeneration: an electrophysiological and in situ hybridization study. Neuroscience, 113(2), 311–321. doi:10.1016/s0306-4522(02)00186-0 PubMed DOI

Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao H-W, … Hattar S (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 453(7191), 102–105. doi:10.1038/nature06829 PubMed DOI PMC

Hattar S, Liao HW, Takao M, Berson DM, & Yau KW (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065–1070. doi:10.1126/science.1069609 PubMed DOI PMC

Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, & Itohara S (2015). Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science, 350(6263), 957–961. doi:10.1126/science.aad1023 PubMed DOI

Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, & Denk W (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168–174. doi:10.1038/nature12346 PubMed DOI

Hobert O (2011). Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol, 27, 681–696. doi:10.1146/annurev-cellbio-092910-154226 PubMed DOI

Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, & Barres BA (2009). Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron, 62(3), 327–334. doi:10.1016/j.neuron.2009.04.014 PubMed DOI PMC

Isa T (2002). Intrinsic processing in the mammalian superior colliculus. Curr Opin Neurobiol, 12(6), 668–677. doi:10.1016/s0959-4388(02)00387-2 PubMed DOI

Isa T, & Saito Y (2001). The direct visuo-motor pathway in mammalian superior colliculus; novel perspective on the interlaminar connection. Neurosci Res, 41(2), 107–113. doi:10.1016/s0168-0102(01)00278–4 PubMed DOI

Jacoby J, Zhu Y, DeVries SH, & Schwartz GW (2015). An Amacrine Cell Circuit for Signaling Steady Illumination in the Retina. Cell Rep, 13(12), 2663–2670. doi:10.1016/j.celrep.2015.11.062 PubMed DOI PMC

Jo A, Xu J, Deniz S, Cherian S, DeVries SH, & Zhu Y (2018). Intersectional Strategies for Targeting Amacrine and Ganglion Cell Types in the Mouse Retina. Front Neural Circuits, 12, 66. doi:10.3389/fncir.2018.00066 PubMed DOI PMC

Jones EG (1975). Some aspects of the organization of the thalamic reticular complex. J Comp Neurol, 162(3), 285–308. doi:10.1002/cne.901620302 PubMed DOI

Kashiwagi M, Kanuka M, Tatsuzawa C, Suzuki H, Morita M, Tanaka K, … Hayashi Y (2020). Widely Distributed Neurotensinergic Neurons in the Brainstem Regulate NREM Sleep in Mice. Curr Biol, 30(6), 1002–1010.e1004. doi:10.1016/j.cub.2020.01.047 PubMed DOI

Kim I-J, Zhang Y, Yamagata M, Meister M, & Sanes JR (2008). Molecular identification of a retinal cell type that responds to upward motion. Nature, 452(7186), 478–482. doi:10.1038/nature06739 PubMed DOI

Kirchgessner MA, Franklin AD, & Callaway EM (2020). Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proc Natl Acad Sci U S A, 117(23), 13066–13077. doi:10.1073/pnas.2002080117 PubMed DOI PMC

Klimova L, & Kozmik Z (2014). Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development, 141(6), 1292–1302. doi:10.1242/dev.098822 PubMed DOI

Klimova L, Lachova J, Machon O, Sedlacek R, & Kozmik Z (2013). Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One, 8(5), e63029. doi:10.1371/journal.pone.0063029 PubMed DOI PMC

Kragel PA, Bianciardi M, Hartley L, Matthewson G, Choi JK, Quigley KS, … Satpute AB (2019). Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control. J Neurosci, 39(31), 6180–6189. doi:10.1523/JNEUROSCI.2043-18.2019 PubMed DOI PMC

Krauzlis RJ, Liston D, & Carello CD (2004). Target selection and the superior colliculus: goals, choices and hypotheses. Vision Res, 44(12), 1445–1451. doi:10.1016/j.visres.2004.01.005 PubMed DOI

Krauzlis RJ, Lovejoy LP, & Zénon A (2013). Superior colliculus and visual spatial attention. Annu Rev Neurosci, 36, 165–182. doi:10.1146/annurev-neuro-062012-170249 PubMed DOI PMC

Krieger B, Qiao M, Rousso DL, Sanes JR, & Meister M (2017). Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures. PLoS One, 12(7), e0180091. doi:10.1371/journal.pone.0180091 PubMed DOI PMC

Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, … Trimarchi JM (2019). Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep, 9(1), 15778. doi:10.1038/s41598-019-52215-4 PubMed DOI PMC

Lee T, & Luo L (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3), 451–461. PubMed

Leyva-Diaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, & Hobert O (2020). Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. Wiley Interdiscip Rev Dev Biol, 9(4), e374. doi:10.1002/wdev.374 PubMed DOI

Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, & Tao HW (2015). Sensory Cortical Control of a Visually Induced Arrest Behavior via Corticotectal Projections. Neuron, 86(3), 755–767. doi:10.1016/j.neuron.2015.03.048 PubMed DOI PMC

Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, & Graham A (2017). The emergence of mesencephalic trigeminal neurons. Neural Dev, 12(1), 11. doi:10.1186/s13064-017-0088-z PubMed DOI PMC

Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, … Lichtman JW (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62. doi:10.1038/nature06293 PubMed DOI

Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, … Zeng H (2015). Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron, 85(5), 942–958. doi:10.1016/j.neuron.2015.02.022 PubMed DOI PMC

Mao CA, Agca C, Mocko-Strand JA, Wang J, Ullrich-Luter E, Pan P, … Klein WH (2016). Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development. Proc Biol Sci, 283(1826), 20152978. doi:10.1098/rspb.2015.2978 PubMed DOI PMC

Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, & Gruss P (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell, 105(1), 43–55. PubMed

Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, … Harris JA (2017). Diverse Central Projection Patterns of Retinal Ganglion Cells. Cell Rep, 18(8), 2058–2072. doi:10.1016/j.celrep.2017.01.075 PubMed DOI PMC

Masri RA, Percival KA, Koizumi A, Martin PR, & Grunert U (2019). Survey of retinal ganglion cell morphology in marmoset. J Comp Neurol, 527(1), 236–258. doi:10.1002/cne.24157 PubMed DOI

Masullo L, Mariotti L, Alexandre N, Freire-Pritchett P, Boulanger J, & Tripodi M (2019). Genetically Defined Functional Modules for Spatial Orienting in the Mouse Superior Colliculus. Curr Biol, 29(17), 2892–2904 e2898. doi:10.1016/j.cub.2019.07.083 PubMed DOI PMC

Matteau I, Boire D, & Ptito M (2003). Retinal projections in the cat: a cholera toxin B subunit study. Vis Neurosci, 20(5), 481–493. doi:10.1017/s0952523803205022 PubMed DOI

May PJ (2006). The mammalian superior colliculus: laminar structure and connections. Prog Brain Res, 151, 321–378. doi:10.1016/s0079-6123(05)51011-2 PubMed DOI

Meloni EG, & Davis M (1999). Muscimol in the deep layers of the superior colliculus/mesencephalic reticular formation blocks expression but not acquisition of fear-potentiated startle in rats. Behav Neurosci, 113(6), 1152–1160. doi:10.1037//0735-7044.113.6.1152 PubMed DOI

Meloni EG, & Davis M (2000). GABA in the deep layers of the superior Colliculus/Mesencephalic reticular formation mediates the enhancement of startle by the dopamine D1 receptor agonist SKF 82958 in rats. J Neurosci, 20(14), 5374–5381. doi:10.1523/jneurosci.20-14-05374.2000 PubMed DOI PMC

Morgan JL, Dhingra A, Vardi N, & Wong ROL (2006). Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci, 9(1), 85–92. doi:10.1038/nn1615 PubMed DOI

Nath A, & Schwartz GW (2016). Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina. J Neurosci, 36(11), 3208–3221. doi:10.1523/JNEUROSCI.4554-15.2016 PubMed DOI PMC

Nath A, & Schwartz GW (2017). Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun, 8(1), 2025. doi:10.1038/s41467-017-01980-9 PubMed DOI PMC

Nixon K, & Mangieri RA (2019). Compelled to drink: Why some cannot stop. Science, 366(6468), 947–948. doi:10.1126/science.aaz7357 PubMed DOI

Oliver KM, Florez-Paz DM, Badea TC, Mentis GZ, Menon V, & de Nooij JC (2020). Molecular development of muscle spindle and Golgi tendon organ sensory afferents revealed by single proprioceptor transcriptome analysis. bioRxiv, 2020.2004.2003.023986. doi:10.1101/2020.04.03.023986 DOI

Pan L, Yang Z, Feng L, & Gan L (2005). Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development, 132(4), 703–712. doi:10.1242/dev.01646 PubMed DOI

Parmhans N, Sajgo S, Niu J, Luo W, & Badea TC (2018). Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol, 526(4), 742–766. doi:10.1002/cne.24367 PubMed DOI PMC

Paxinos G, Franklin KBJ, & Franklin KBJ (2001). The mouse brain in stereotaxic coordinates (2nd ed.). San Diego: Academic Press.

Ramón y Cajal S (1972). The structure of the retina. Springfield, Ill.: C.C. Thomas.

Rees H, & Roberts MH (1993). The anterior pretectal nucleus: a proposed role in sensory processing. Pain, 53(2), 121–135. doi:10.1016/0304-3959(93)90072-w PubMed DOI

Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, … Trakhtenberg EF (2018). Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun, 9(1), 2759. doi:10.1038/s41467-018-05134-3 PubMed DOI PMC

Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL, Barres BA, … Feller MB (2011). Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J Neurosci, 31(24), 8760–8769. doi:10.1523/JNEUROSCI.0564-11.2011 PubMed DOI PMC

Rockhill RL, Daly FJ, MacNeil MA, Brown SP, & Masland RH (2002). The diversity of ganglion cells in a mammalian retina. J Neurosci, 22(9), 3831–3843. doi:20026369 22/9/3831 [pii] PubMed PMC

Rodieck RW, & Watanabe M (1993). Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. J Comp Neurol, 338(2), 289–303. doi:10.1002/cne.903380211 PubMed DOI

Rodriguez AR, de Sevilla Muller LP, & Brecha NC (2014). The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol, 522(6), 1411–1443. doi:10.1002/cne.23521 PubMed DOI PMC

Rodríguez M, Abdala P, Barroso-Chinea P, & González-Hernández T (2001). The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities with the substantia nigra. J Comp Neurol, 438(1), 12–31. doi:10.1002/cne.1299 PubMed DOI

Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, & Sanes JR (2016). Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. Cell Rep, 15(9), 1930–1944. doi:10.1016/j.celrep.2016.04.069 PubMed DOI PMC

Sabbagh U, Govindaiah G, Somaiya RD, Ha RV, Wei JC, Guido W, & Fox MA (2020). Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J Neurochem. doi:10.1111/jnc.15101 PubMed DOI PMC

Sajgo S, Ghinia MG, Brooks M, Kretschmer F, Chuang K, Hiriyanna S, … Badea TC (2017). Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proc Natl Acad Sci U S A, 114(20), E3974–E3983. doi:10.1073/pnas.1618551114 PubMed DOI PMC

Sajgo S, Ghinia MG, Shi M, Liu P, Dong L, Parmhans N, … Badea TC (2014). Dre - Cre sequential recombination provides new tools for retinal ganglion cell labeling and manipulation in mice. PLoS One, 9(3), e91435. doi:10.1371/journal.pone.0091435 PubMed DOI PMC

Sakai K (2018). Single unit activity of periaqueductal gray and deep mesencephalic nucleus neurons involved in sleep stage switching in the mouse. Eur J Neurosci, 47(9), 1110–1126. doi:10.1111/ejn.13888 PubMed DOI

Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, … Barrett LF (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci U S A, 110(42), 17101–17106. doi:10.1073/pnas.1306095110 PubMed DOI PMC

Sauer B, & McDermott J (2004). DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res, 32(20), 6086–6095. doi:10.1093/nar/gkh941 PubMed DOI PMC

Schwaller B, Dick J, Dhoot G, Carroll S, Vrbova G, Nicotera P, … Celio MR (1999). Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. Am J Physiol, 276(2), C395–403. doi:10.1152/ajpcell.1999.276.2.C395 PubMed DOI

Shang C, Chen Z, Liu A, Li Y, Zhang J, Qu B, … Cao P (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun, 9(1), 1232. doi:10.1038/s41467-018-03580-7 PubMed DOI PMC

Shang C, Liu Z, Chen Z, Shi Y, Wang Q, Liu S, … Cao P (2015). BRAIN CIRCUITS. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 348(6242), 1472–1477. doi:10.1126/science.aaa8694 PubMed DOI

Shi M, Kumar SR, Motajo O, Kretschmer F, Mu X, & Badea TC (2013). Genetic interactions between Brn3 transcription factors in retinal ganglion cell type specification. PLoS One, 8(10), e76347. doi:10.1371/journal.pone.0076347 PubMed DOI PMC

Siciliano CA, Noamany H, Chang CJ, Brown AR, Chen X, Leible D, … Tye KM (2019). A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science, 366(6468), 1008–1012. doi:10.1126/science.aay1186 PubMed DOI PMC

St Laurent R, Martinez Damonte V, Tsuda AC, & Kauer JA (2020). Periaqueductal Gray and Rostromedial Tegmental Inhibitory Afferents to VTA Have Distinct Synaptic Plasticity and Opiate Sensitivity. Neuron, 106(4), 624–636.e624. doi:10.1016/j.neuron.2020.02.029 PubMed DOI PMC

Stein BE (1984). Development of the superior colliculus. Annu Rev Neurosci, 7, 95–125. doi:10.1146/annurev.ne.07.030184.000523 PubMed DOI

Sterratt DC, Lyngholm D, Willshaw DJ, & Thompson ID (2013). Standard anatomical and visual space for the mouse retina: computational reconstruction and transformation of flattened retinae with the Retistruct package. PLoS Comput Biol, 9(2), e1002921. doi:10.1371/journal.pcbi.1002921 PubMed DOI PMC

Sun W, Li N, & He S (2002a). Large-scale morophological survey of rat retinal ganglion cells. Vis Neurosci, 19(4), 483–493. PubMed

Sun W, Li N, & He S (2002b). Large-scale morphological survey of mouse retinal ganglion cells. J Comp Neurol, 451(2), 115–126. doi:10.1002/cne.10323 PubMed DOI

Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, … Luthi A (2016). Midbrain circuits for defensive behaviour. Nature, 534(7606), 206–212. doi:10.1038/nature17996 PubMed DOI

Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, … Sanes JR (2019). Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron, 104(6), 1039–1055 e1012. doi:10.1016/j.neuron.2019.11.006 PubMed DOI PMC

Trenholm S, Johnson K, Li X, Smith RG, & Awatramani GB (2011). Parallel mechanisms encode direction in the retina. Neuron, 71(4), 683–694. doi:10.1016/j.neuron.2011.06.020 PubMed DOI PMC

Veazey RB, & Severin CM (1980a). Efferent projections of the deep mesencephalic nucleus (pars lateralis) in the rat. J Comp Neurol, 190(2), 231–244. doi:10.1002/cne.901900203 PubMed DOI

Veazey RB, & Severin CM (1980b). Efferent projections of the deep mesencephalic nucleus (pars medialis) in the rat. J Comp Neurol, 190(2), 245–258. doi:10.1002/cne.901900204 PubMed DOI

Wang SW, Mu X, Bowers WJ, Kim D-S, Plas DJ, Crair MC, … Klein WH (2002). Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development, 129(2), 467–477. PubMed

Wang XM, Yuan B, & Hou ZL (1992). Role of the deep mesencephalic nucleus in the antinociception induced by stimulation of the anterior pretectal nucleus in rats. Brain Res, 577(2), 321–325. doi:10.1016/0006-8993(92)90291-g PubMed DOI

Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, … Wang L (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun, 6, 6756. doi:10.1038/ncomms7756 PubMed DOI PMC

Wichterle H, Turnbull DH, Nery S, Fishell G, & Alvarez-Buylla A (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 128(19), 3759–3771. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11585802 PubMed

Winer JA, & Schreiner C (2005). The inferior colliculus : with 168 illustrations. New York, NY: Springer.

Xiang M, Gan L, Li D, Chen ZY, Zhou L, O’Malley J, B W, … Nathans J (1997). Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci U S A, 94(17), 9445–9450. PubMed PMC

Xiang M, Gan L, Zhou L, Klein WH, & Nathans J (1996). Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci U S A, 93(21), 11950–11955. PubMed PMC

Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, … Nathans J (1995). The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci, 15(7 Pt 1), 4762–4785. PubMed PMC

Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, & Nathans J (1993). Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron, 11(4), 689–701. PubMed

Zhang Y, Kim IJ, Sanes JR, & Meister M (2012). The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci U S A, 109(36), E2391–2398. doi:10.1073/pnas.1211547109 PubMed DOI PMC

Zhao Z, & Davis M (2004). Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci, 24(46), 10326–10334. doi:10.1523/jneurosci.2758-04.2004 PubMed DOI PMC

Zhu Y, Xu J, Hauswirth WW, & DeVries SH (2014). Genetically targeted binary labeling of retinal neurons. J Neurosci, 34(23), 7845–7861. doi:10.1523/JNEUROSCI.2960-13.2014 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...