BACKGROUND AND OBJECTIVES: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease primarily affecting the peripheral nervous system. However, several noncontrolled studies have suggested concomitant inflammatory CNS demyelination similar to multiple sclerosis. The aim of this study was to investigate an involvement of the visual pathway in patients with CIDP. METHODS: In this prospective cross-sectional study, we used high-resolution spectral-domain optical coherence tomography to compare the thickness of the peripapillary retinal nerve fiber layer and the deeper macular retinal layers as well as the total macular volume (TMV) in 22 patients with CIDP and 22 age-matched and sex-matched healthy control (HC) individuals. Retinal layers were semiautomatically segmented by the provided software and were correlated with clinical measures and nerve conduction studies. RESULTS: In patients with CIDP compared with healthy age-matched and sex-matched controls, we found slight but significant volume reductions of the ganglion cell/inner plexiform layer complex (CIDP 1.86 vs HC 1.95 mm3, p = 0.015), the retinal pigment epithelium (CIDP 0.38 vs HC 0.40 mm3, p = 0.02), and the TMV (CIDP 8.48 vs HC 8.75 mm3, p = 0.018). The ganglion cell layer volume and motor nerve conduction velocity were positively associated (B = 0.002, p = 0.02). DISCUSSION: Our data reveal subtle retinal neurodegeneration in patients with CIDP, providing evidence for visual pathway involvement, detectable by OCT. The results need corroboration in independent, larger cohorts.
- MeSH
- chronická zánětlivá demyelinizační polyneuropatie diagnostické zobrazování patologie patofyziologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- nervové vedení fyziologie MeSH
- optická koherentní tomografie MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- retina diagnostické zobrazování patologie MeSH
- senioři MeSH
- zrakové dráhy diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- hydrocefalus diagnóza farmakoterapie patologie MeSH
- lidé MeSH
- městnavá papila diagnóza etiologie farmakoterapie klasifikace patologie MeSH
- nádory mozku diagnóza etiologie klasifikace patologie MeSH
- nemoci okohybného nervu * diagnóza etiologie klasifikace MeSH
- nemoci zrakového nervu * klasifikace patologie vrozené MeSH
- neurodegenerativní nemoci klasifikace patologie MeSH
- oční symptomy MeSH
- patologický nystagmus klasifikace patologie MeSH
- poruchy zornice diagnóza etiologie klasifikace patologie MeSH
- poruchy zraku diagnóza etiologie klasifikace patologie terapie MeSH
- zrakové dráhy anatomie a histologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- přehledy MeSH
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
- MeSH
- alely MeSH
- genový knockin metody MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- integrasy MeSH
- mozek cytologie metabolismus MeSH
- myši MeSH
- retinální gangliové buňky cytologie metabolismus MeSH
- transkripční faktor Brn-3C genetika metabolismus MeSH
- zrakové dráhy cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
- MeSH
- axony fyziologie MeSH
- colliculus superior cytologie metabolismus fyziologie MeSH
- extracelulární matrix fyziologie MeSH
- integriny metabolismus MeSH
- mozek fyziologie MeSH
- myši MeSH
- retinální gangliové buňky fyziologie MeSH
- signální transdukce MeSH
- zrakové dráhy * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.
- MeSH
- akční potenciály fyziologie MeSH
- kočky MeSH
- modely neurologické * MeSH
- nervový přenos fyziologie MeSH
- nervový útlum fyziologie MeSH
- neurony fyziologie MeSH
- synapse fyziologie MeSH
- zraková percepce fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- zrakové korové centrum fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes (temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance modulation. We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively. This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly correlated. Our results suggest that for X-ON cells a more efficient "temporal code" is employed, while for X-OFF cells a straightforward "rate code" is used, which is more reliable and is correlated with energy consumption.
- MeSH
- akční potenciály fyziologie MeSH
- duševní procesy fyziologie MeSH
- kočky MeSH
- metathalamus cytologie fyziologie MeSH
- neurony fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové dráhy cytologie fyziologie MeSH
- zrakové korové centrum cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- MeSH
- dějiny 20. století MeSH
- neurofyziologie * dějiny MeSH
- Nobelova cena MeSH
- zrakové dráhy fyziologie MeSH
- Check Tag
- dějiny 20. století MeSH
- Publikační typ
- biografie MeSH
- historické články MeSH
- O autorovi
- Hubel, David H., 1926-2013 Autorita
Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes - e.g. physiological, morphological and behavioural - remain largely unknown. Here, we investigated how ontogenetic changes in body coloration and of the visual system relate to habitat transitions in a coral reef fish. Adult dusky dottybacks, Pseudochromis fuscus, are aggressive mimics that change colour to imitate various fishes in their surroundings; however, little is known about the early life stages of this fish. Using a developmental time series in combination with the examination of wild-caught specimens, we revealed that dottybacks change colour twice during development: (i) nearly translucent cryptic pelagic larvae change to a grey camouflage coloration when settling on coral reefs; and (ii) juveniles change to mimic yellow- or brown-coloured fishes when reaching a size capable of consuming juvenile fish prey. Moreover, microspectrophotometric (MSP) and quantitative real-time PCR (qRT-PCR) experiments show developmental changes of the dottyback visual system, including the use of a novel adult-specific visual gene (RH2 opsin). This gene is likely to be co-expressed with other visual pigments to form broad spectral sensitivities that cover the medium-wavelength part of the visible spectrum. Surprisingly, the visual modifications precede changes in habitat and colour, possibly because dottybacks need to first acquire the appropriate visual performance before transitioning into novel life stages.
- MeSH
- barva MeSH
- biologické modely MeSH
- časové faktory MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- korálové útesy * MeSH
- kůže cytologie MeSH
- kvantitativní znak dědičný MeSH
- mimikry * MeSH
- opsiny genetika MeSH
- pigmentace fyziologie MeSH
- predátorské chování MeSH
- regulace genové exprese MeSH
- ryby růst a vývoj fyziologie MeSH
- zrak fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH