ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing β-Selection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA079057
NCI NIH HHS - United States
R01 DK096266
NIDDK NIH HHS - United States
R01 GM116143
NIGMS NIH HHS - United States
PubMed
31068388
PubMed Central
PMC6548592
DOI
10.4049/jimmunol.1801684
PII: jimmunol.1801684
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy genetika metabolismus MeSH
- B-lymfocyty fyziologie MeSH
- buněčná diferenciace MeSH
- chromozomální proteiny, nehistonové genetika metabolismus MeSH
- genová přestavba MeSH
- klonální selekce zprostředkovaná antigeny MeSH
- kultivované buňky MeSH
- lymfoidní progenitorové buňky fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- receptory antigenů B-buněk genetika metabolismus MeSH
- receptory antigenů T-buněk alfa-beta genetika metabolismus MeSH
- receptory antigenů T-buněk gama-delta genetika metabolismus MeSH
- T-lymfocyty fyziologie MeSH
- thymocyty fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové MeSH
- nádorový supresorový protein p53 MeSH
- receptory antigenů B-buněk MeSH
- receptory antigenů T-buněk alfa-beta MeSH
- receptory antigenů T-buněk gama-delta MeSH
- Smarca5 protein, mouse MeSH Prohlížeč
- Trp53 protein, mouse MeSH Prohlížeč
Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αβ thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αβ thymocyte block is accompanied by massive apoptotic depletion of β-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αβ T cell precursors that survived apoptosis were able to undergo a successful TCRβ rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing β-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.
3rd Faculty of Medicine Charles University Prague 10000 Czech Republic
BIOCEV 1st Faculty of Medicine Charles University Vestec 25250 Czech Republic
BIOCEV 1st Faculty of Medicine Charles University Vestec 25250 Czech Republic;
Department of Cell Biology Albert Einstein College of Medicine Bronx 10461 NY
Institute of Experimental Medicine Czech Academy of Sciences Prague 14220 Czech Republic
Zobrazit více v PubMed
Rothenberg EV, Moore JE, and Yui MA. 2008. Launching the T-cell-lineage developmental programme. Nat Rev Immunol 8: 9–21. PubMed PMC
Zhang JA, Mortazavi A, Williams BA, Wold BJ, and Rothenberg EV. 2012. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149: 467–482. PubMed PMC
Haks MC, Krimpenfort P, van den Brakel JH, and Kruisbeek AM. 1999. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11: 91–101. PubMed
Shah DK, and Zuniga-Pflucker JC. 2014. An overview of the intrathymic intricacies of T cell development. J Immunol 192: 4017–4023. PubMed
Winandy S 2005. Regulation of chromatin structure during thymic T cell development. J Cell Biochem 95: 466–477. PubMed
Dege C, and Hagman J. 2014. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol Rev 261: 126–140. PubMed PMC
Tsukiyama T, Palmer J, Landel CC, Shiloach J, and Wu C. 1999. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13: 686–697. PubMed PMC
Erdel F, and Rippe K. 2011. Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why? FEBS J 278: 3608–3618. PubMed
Wurster AL, and Pazin MJ. 2008. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol Cell Biol 28: 7274–7285. PubMed PMC
Kokavec J, Zikmund T, Savvulidi F, Kulvait V, Edelmann W, Skoultchi AI, and Stopka T. 2017. The ISWI ATPase Smarca5 (Snf2h) is required for proliferation and differentiation of hematopoietic stem and progenitor cells. Stem Cells. PubMed PMC
Patenge N, Elkin SK, and Oettinger MA. 2004. ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 279: 35360–35367. PubMed
Yasui D, Miyano M, Cai S, Varga-Weisz P, and Kohwi-Shigematsu T. 2002. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419: 641–645. PubMed
Precht P, Wurster AL, and Pazin MJ. 2010. The SNF2H chromatin remodeling enzyme has opposing effects on cytokine gene expression. Mol Immunol 47: 2038–2046. PubMed PMC
Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M, and Keeney S. 2013. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genet 9: e1003945. PubMed PMC
Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SD, Flicek P, Skarnes WC, Mallon AM, and Parkinson H. 2014. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42: D802–809. PubMed PMC
He X, Fan HY, Garlick JD, and Kingston RE. 2008. Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits. Biochemistry 47: 7025–7033. PubMed
Alvarez-Saavedra M, De Repentigny Y, Lagali PS, Raghu Ram EV, Yan K, Hashem E, Ivanochko D, Huh MS, Yang D, Mears AJ, Todd MA, Corcoran CP, Bassett EA, Tokarew NJ, Kokavec J, Majumder R, Ioshikhes I, Wallace VA, Kothary R, Meshorer E, Stopka T, Skoultchi AI, and Picketts DJ. 2014. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat Commun 5: 4181. PubMed PMC
Siegemund S, Shepherd J, Xiao C, and Sauer K. 2015. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS One 10: e0124661. PubMed PMC
Holmes R, and Zuniga-Pflucker JC. 2009. The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb Protoc 2009: pdb prot5156. PubMed
Kim D, Langmead B, and Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12: 357–360. PubMed PMC
R-Core-Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Love MI, Huber W, and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550. PubMed PMC
Wickham H 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York.
Risso D, Schwartz K, Sherlock G, and Dudoit S. 2011. GC-content normalization for RNA-Seq data. BMC Bioinformatics 12: 480. PubMed PMC
Zhu A, Ibrahim JG, and Love MI. 2018. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. bioRxiv. PubMed PMC
de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, and Kioussis D. 2003. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33: 314–325. PubMed
Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, Pannell R, Siebel CW, MacDonald HR, De Keersmaecker K, Ferrando AA, Grutz G, and Turner M. 2010. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 11: 717–724. PubMed PMC
Rongvaux A, Galli M, Denanglaire S, Van Gool F, Dreze PL, Szpirer C, Bureau F, Andris F, and Leo O. 2008. Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J Immunol 181: 4685–4695. PubMed
Coffey F, Lee SY, Buus TB, Lauritsen JP, Wong GW, Joachims ML, Thompson LF, Zuniga-Pflucker JC, Kappes DJ, and Wiest DL. 2014. The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment and a metastable intermediate in effector specification. J Exp Med 211: 329–343. PubMed PMC
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, and Malissen B. 2006. Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7: 995–1003. PubMed
Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R, and Prinz I. 2009. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur J Immunol 39: 3488–3497. PubMed
Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, and Silva-Santos B. 2009. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10: 427–436. PubMed PMC
Holm M, Thomsen M, Hoyer M, and Hokland P. 1998. Optimization of a flow cytometric method for the simultaneous measurement of cell surface antigen, DNA content, and in vitro BrdUrd incorporation into normal and malignant hematopoietic cells. Cytometry 32: 28–36. PubMed
Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, and Varga-Weisz PD. 2002. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32: 627–632. PubMed
Mombaerts P, Clarke AR, Rudnicki MA, Iacomini J, Itohara S, Lafaille JJ, Wang LL, Ichikawa Y, Jaenisch R, Hooper ML, and Tonegawa S. 1992. Mutations in T-Cell Antigen Receptor Genes Alpha-Block and Beta-Block Thymocyte Development at Different Stages. Nature 360: 225–231. PubMed
Shinkai Y, and Alt FW. 1994. CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2−/− mice in the absence of TCR beta chain expression. Int Immunol 6: 995–1001. PubMed
Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, and Love PE. 1998. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 188: 2301–2311. PubMed PMC
Rodewald HR, Awad K, Moingeon P, D’Adamio L, Rabinowitz D, Shinkai Y, Alt FW, and Reinherz EL. 1993. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status. J Exp Med 177: 1079–1092. PubMed PMC
Teague TK, Tan C, Marino JH, Davis BK, Taylor AA, Huey RW, and Van De Wiele CJ. 2010. CD28 expression redefines thymocyte development during the pre-T to DP transition. Int Immunol 22: 387–397. PubMed
Barnden MJ, Allison J, Heath WR, and Carbone FR. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 76: 34–40. PubMed
Kim J, Lee SK, Jeon Y, Kim Y, Lee C, Jeon SH, Shim J, Kim IH, Hong S, Kim N, Lee H, and Seong RH. 2014. TopBP1 deficiency impairs V(D)J recombination during lymphocyte development. EMBO J 33: 217–228. PubMed PMC
Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, and Kohwi-Shigematsu T. 2000. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14: 521–535. PubMed PMC
He S, Limi S, McGreal RS, Xie Q, Brennan LA, Kantorow WL, Kokavec J, Majumdar R, Hou H Jr., Edelmann W, Liu W, Ashery-Padan R, Zavadil J, Kantorow M, Skoultchi AI, Stopka T, and Cvekl A. 2016. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development 143: 1937–1947. PubMed PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, and Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. PubMed PMC
Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Immunological Genome C, Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Nageswara Rao T, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, and Turley S. 2013. The transcriptional landscape of alphabeta T cell differentiation. Nat Immunol 14: 619–632. PubMed PMC
Godfrey DI, Stankovic S, and Baxter AG. 2010. Raising the NKT cell family. Nat Immunol 11: 197–206. PubMed
Rolink A, Grawunder U, Winkler TH, Karasuyama H, and Melchers F. 1994. IL-2 receptor alpha chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int Immunol 6: 1257–1264. PubMed
Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, and Weinberg RA. 1994. Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7. PubMed
Gebuhr TC, Kovalev GI, Bultman S, Godfrey V, Su L, and Magnuson T. 2003. The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med 198: 1937–1949. PubMed PMC
Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R, Janicki SM, Ogiwara H, Kohno T, Kanno S, and Yasui A. 2010. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 40: 976–987. PubMed
Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, D’Urso A, Naar AM, Kingston R, Rippe K, and Mostoslavsky R. 2013. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51: 454–468. PubMed PMC
Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, Shimada M, Tauchi H, Suzuki H, Tashiro S, Zou L, and Komatsu K. 2011. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41: 515–528. PubMed
Smeenk G, Wiegant WW, Marteijn JA, Luijsterburg MS, Sroczynski N, Costelloe T, Romeijn RJ, Pastink A, Mailand N, Vermeulen W, and van Attikum H. 2013. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci 126: 889–903. PubMed
Helmink BA, and Sleckman BP. 2012. The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30: 175–202. PubMed PMC
Bartek J, Lukas C, and Lukas J. 2004. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804. PubMed
Baus F, Gire V, Fisher D, Piette J, and Dulic V. 2003. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22: 3992–4002. PubMed PMC
Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, and Vogelstein B. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501. PubMed
Krenning L, Feringa FM, Shaltiel IA, van den Berg J, and Medema RH. 2014. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell 55: 59–72. PubMed
Wurster AL, and Pazin MJ. 2012. ATP-dependent chromatin remodeling in T cells. Biochem Cell Biol 90: 1–13. PubMed PMC
Chi TH, Wan M, Lee PP, Akashi K, Metzger D, Chambon P, Wilson CB, and Crabtree GR. 2003. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19: 169–182. PubMed
Williams CJ, Naito T, Arco PG, Seavitt JR, Cashman SM, De Souza B, Qi X, Keables P, Von Andrian UH, and Georgopoulos K. 2004. The chromatin remodeler Mi-2beta is required for CD4 expression and T cell development. Immunity 20: 719–733. PubMed
Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, Schiltz RL, and Hager GL. 2014. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 21: 73–81. PubMed PMC
Sala A, Toto M, Pinello L, Gabriele A, Di Benedetto V, Ingrassia AM, Lo Bosco G, Di Gesu V, Giancarlo R, and Corona DF. 2011. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J 30: 1766–1777. PubMed PMC
SMARCA5-mediated chromatin remodeling is required for germinal center formation
Differential requirements for Smarca5 expression during hematopoietic stem cell commitment