SMARCA5-mediated chromatin remodeling is required for germinal center formation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
101001613
European Research Council - International
1272/23
Israel Science Foundation
Morris Kahn Institute for Human Immunology
European Molecular Biology Organization
24-10435S
Grantová Agentura České Republiky
LX22NPO5102
Programme EXCELES
Next Generation EU
PubMed
39297882
PubMed Central
PMC11413417
DOI
10.1084/jem.20240433
PII: 276976
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy MeSH
- aktivace lymfocytů imunologie MeSH
- B-lymfocyty * metabolismus imunologie MeSH
- buněčná diferenciace * MeSH
- chromozomální proteiny, nehistonové * metabolismus genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přesmyk imunoglobulinových tříd genetika MeSH
- restrukturace chromatinu * MeSH
- zárodečné centrum lymfatické uzliny * imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- chromozomální proteiny, nehistonové * MeSH
- Smarca5 protein, mouse MeSH Prohlížeč
The establishment of long-lasting immunity against pathogens is facilitated by the germinal center (GC) reaction, during which B cells increase their antibody affinity and differentiate into antibody-secreting cells (ASC) and memory cells. These events involve modifications in chromatin packaging that orchestrate the profound restructuring of gene expression networks that determine cell fate. While several chromatin remodelers were implicated in lymphocyte functions, less is known about SMARCA5. Here, using ribosomal pull-down for analyzing translated genes in GC B cells, coupled with functional experiments in mice, we identified SMARCA5 as a key chromatin remodeler in B cells. While the naive B cell compartment remained unaffected following conditional depletion of Smarca5, effective proliferation during B cell activation, immunoglobulin class switching, and as a result GC formation and ASC differentiation were impaired. Single-cell multiomic sequencing analyses revealed that SMARCA5 is crucial for facilitating the transcriptional modifications and genomic accessibility of genes that support B cell activation and differentiation. These findings offer novel insights into the functions of SMARCA5, which can be targeted in various human pathologies.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot Israel
Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel
Department of Systems Immunology Weizmann Institute of Science Rehovot Israel
Zobrazit více v PubMed
Allen, C.D.C., Ansel K.M., Low C., Lesley R., Tamamura H., Fujii N., and Cyster J.G.. 2004. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5:943–952. 10.1038/ni1100 PubMed DOI
Alvarez-Saavedra, M., De Repentigny Y., Lagali P.S., Raghu Ram E.V.S., Yan K., Hashem E., Ivanochko D., Huh M.S., Yang D., Mears A.J., et al. . 2014. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat. Commun. 5:4181. 10.1038/ncomms5181 PubMed DOI PMC
Arends, T., Dege C., Bortnick A., Danhorn T., Knapp J.R., Jia H., Harmacek L., Fleenor C.J., Straign D., Walton K., et al. . 2019. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proc. Natl. Acad. Sci. USA. 116:10927–10936. 10.1073/pnas.1821301116 PubMed DOI PMC
Aydin, Ö.Z., Vermeulen W., and Lans H.. 2014. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle. 13:3016–3025. 10.4161/15384101.2014.956551 PubMed DOI PMC
Barisic, D., Stadler M.B., Iurlaro M., and Schübeler D.. 2019. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 569:136–140. 10.1038/s41586-019-1115-5 PubMed DOI PMC
Batista, F.D., and Harwood N.E.. 2009. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9:15–27. 10.1038/nri2454 PubMed DOI
Bayona-Feliu, A., Herrera-Moyano E., Badra-Fajardo N., Galván-Femenía I., Soler-Oliva M.E., and Aguilera A.. 2023. The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts. Nat. Commun. 14:6890. 10.1038/s41467-023-42653-0 PubMed DOI PMC
Biram, A., Davidzohn N., and Shulman Z.. 2019. T cell interactions with B cells during germinal center formation, a three-step model. Immunol. Rev. 288:37–48. 10.1111/imr.12737 PubMed DOI
Bomber, M.L., Wang J., Liu Q., Barnett K.R., Layden H.M., Hodges E., Stengel K.R., and Hiebert S.W.. 2023. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol. Cell. 83:507–522.e6. 10.1016/j.molcel.2022.12.018 PubMed DOI PMC
Bossen, C., Murre C.S., Chang A.N., Mansson R., Rodewald H.-R., and Murre C.. 2015. The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat. Immunol. 16:775–784. 10.1038/ni.3170 PubMed DOI PMC
Bowman, G.D. 2010. Mechanisms of ATP-dependent nucleosome sliding. Curr. Opin. Struct. Biol. 20:73–81. 10.1016/j.sbi.2009.12.002 PubMed DOI PMC
Bozhenok, L., Wade P.A., and Varga-Weisz P.. 2002. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21:2231–2241. 10.1093/emboj/21.9.2231 PubMed DOI PMC
Bunting, K.L., Soong T.D., Singh R., Jiang Y., Béguelin W., Poloway D.W., Swed B.L., Hatzi K., Reisacher W., Teater M., et al. . 2016. Multi-tiered reorganization of the genome during B cell affinity maturation anchored by a germinal center-specific locus control region. Immunity. 45:497–512. 10.1016/j.immuni.2016.08.012 PubMed DOI PMC
Chi, X., Li Y., and Qiu X.. 2020. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: Mechanism and regulation. Immunology. 160:233–247. 10.1111/imm.13176 PubMed DOI PMC
Choi, J., Ko M., Jeon S., Jeon Y., Park K., Lee C., Lee H., and Seong R.H.. 2012. The SWI/SNF-like BAF complex is essential for early B cell development. J. Immunol. 188:3791–3803. 10.4049/jimmunol.1103390 PubMed DOI
Clapier, C.R., and Cairns B.R.. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304. 10.1146/annurev.biochem.77.062706.153223 PubMed DOI
Clapier, C.R., Iwasa J., Cairns B.R., and Peterson C.L.. 2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18:407–422. 10.1038/nrm.2017.26 PubMed DOI PMC
Collins, N., Poot R.A., Kukimoto I., García-Jiménez C., Dellaire G., and Varga-Weisz P.D.. 2002. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32:627–632. 10.1038/ng1046 PubMed DOI
Corcoran, L.M., and Tarlinton D.M.. 2016. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr. Opin. Immunol. 39:59–67. 10.1016/j.coi.2015.12.008 PubMed DOI
Corona, D.F.V., and Tamkun J.W.. 2004. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta. 1677:113–119. 10.1016/j.bbaexp.2003.09.018 PubMed DOI
Cyster, J.G., and Allen C.D.C.. 2019. B cell responses: Cell interaction dynamics and decisions. Cell. 177:524–540. 10.1016/j.cell.2019.03.016 PubMed DOI PMC
Deng, Q., Lakra P., Gou P., Yang H., Meydan C., Teater M., Chin C., Zhang W., Dinh T., Hussein U., et al. . 2024. SMARCA4 is a haploinsufficient B cell lymphoma tumor suppressor that fine-tunes centrocyte cell fate decisions. Cancer Cell. 42:605–622.e11. 10.1016/j.ccell.2024.02.011 PubMed DOI PMC
Dimova, D.K., and Dyson N.J.. 2005. The E2F transcriptional network: Old acquaintances with new faces. Oncogene. 24:2810–2826. 10.1038/sj.onc.1208612 PubMed DOI
Ding, Y., Wang W., Ma D., Liang G., Kang Z., Xue Y., Zhang Y., Wang L., Heng J., Zhang Y., and Liu F.. 2021. Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood. 137:190–202. 10.1182/blood.2020005219 PubMed DOI PMC
Dluhosova, M., Curik N., Vargova J., Jonasova A., Zikmund T., and Stopka T.. 2014. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5. PLoS One. 9:e87448. 10.1371/journal.pone.0087448 PubMed DOI PMC
Doane, A.S., Chu C.-S., Di Giammartino D.C., Rivas M.A., Hellmuth J.C., Jiang Y., Yusufova N., Alonso A., Roeder R.G., Apostolou E., et al. . 2021. OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity. Nat. Immunol. 22:1327–1340. 10.1038/s41590-021-01025-w PubMed DOI PMC
Gigek, C.O., Lisboa L.C.F., Leal M.F., Silva P.N.O., Lima E.M., Khayat A.S., Assumpção P.P., Burbano R.R., and Smith M.A.. 2011. SMARCA5 methylation and expression in gastric cancer. Cancer Invest. 29:162–166. 10.3109/07357907.2010.543365 PubMed DOI
Glaros, V., Rauschmeier R., Artemov A.V., Reinhardt A., Ols S., Emmanouilidi A., Gustafsson C., You Y., Mirabello C., Björklund Å.K., et al. . 2021. Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity. 54:2005–2023.e10. 10.1016/j.immuni.2021.08.017 PubMed DOI PMC
Grenov, A., Hezroni H., Lasman L., Hanna J.H., and Shulman Z.. 2022. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep. 39:110778. 10.1016/j.celrep.2022.110778 PubMed DOI PMC
Hafemeister, C., and Satija R.. 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20:296. 10.1186/s13059-019-1874-1 PubMed DOI PMC
Hagman, J.R., Arends T., Laborda C., Knapp J.R., Harmacek L., and O’Connor B.P.. 2022. Chromodomain helicase DNA-binding 4 (CHD4) regulates early B cell identity and V(D)J recombination. Immunol. Rev. 305:29–42. 10.1111/imr.13054 PubMed DOI PMC
Haimon, Z., Volaski A., Orthgiess J., Boura-Halfon S., Varol D., Shemer A., Yona S., Zuckerman B., David E., Chappell-Maor L., et al. . 2018. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat. Immunol. 19:636–644. 10.1038/s41590-018-0110-6 PubMed DOI PMC
Hao, Y., Hao S., Andersen-Nissen E., Mauck W.M. III, Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. . 2021. Integrated analysis of multimodal single-cell data. Cell. 184:3573–3587.e29. 10.1016/j.cell.2021.04.048 PubMed DOI PMC
Heesters, B.A., Myers R.C., and Carroll M.C.. 2014. Follicular dendritic cells: Dynamic antigen libraries. Nat. Rev. Immunol. 14:495–504. 10.1038/nri3689 PubMed DOI
Heinz, S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., and Glass C.K.. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38:576–589. 10.1016/j.molcel.2010.05.004 PubMed DOI PMC
He, S., Limi S., McGreal R.S., Xie Q., Brennan L.A., Kantorow W.L., Kokavec J., Majumdar R., Hou H. Jr., Edelmann W., et al. . 2016. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development. 143:1937–1947. 10.1242/dev.135285 PubMed DOI PMC
Holley, D.W., Groh B.S., Wozniak G., Donohoe D.R., Sun W., Godfrey V., and Bultman S.J.. 2014. The BRG1 chromatin remodeler regulates widespread changes in gene expression and cell proliferation during B cell activation. J. Cell. Physiol. 229:44–52. 10.1002/jcp.24414 PubMed DOI
Jaitin, D.A., Kenigsberg E., Keren-Shaul H., Elefant N., Paul F., Zaretsky I., Mildner A., Cohen N., Jung S., Tanay A., and Amit I.. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343:776–779. 10.1126/science.1247651 PubMed DOI PMC
Janssens, D., and Henikoff S.. 2019. CUT&RUN: Targeted in situ genome-wide profiling with high efficiency for low cell numbers v3. protocols.io. 10.17504/protocols.io.zcpf2vn PubMed DOI
Jevtic, Z., Matafora V., Casagrande F., Santoro F., Minucci S., Garre’ M., Rasouli M., Heidenreich O., Musco G., Schwaller J., and Bachi A.. 2022. SMARCA5 interacts with NUP98-NSD1 oncofusion protein and sustains hematopoietic cells transformation. J. Exp. Clin. Cancer Res. 41:34. 10.1186/s13046-022-02248-x PubMed DOI PMC
Jiang, D., Li T., Guo C., Tang T.-S., and Liu H.. 2023. Small molecule modulators of chromatin remodeling: From neurodevelopment to neurodegeneration. Cell Biosci. 13:10. 10.1186/s13578-023-00953-4 PubMed DOI PMC
Jin, Q., Mao X., Li B., Guan S., Yao F., and Jin F.. 2015. Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour Biol. 36:1895–1902. 10.1007/s13277-014-2791-2 PubMed DOI
Kaur, J., Daoud A., and Eblen S.T.. 2019. Targeting chromatin remodeling for cancer therapy. Curr. Mol. Pharmacol. 12:215–229. 10.2174/1874467212666190215112915 PubMed DOI PMC
Keren-Shaul, H., Kenigsberg E., Jaitin D.A., David E., Paul F., Tanay A., and Amit I.. 2019. MARS-seq2.0: An experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14:1841–1862. 10.1038/s41596-019-0164-4 PubMed DOI
Klein, U., Casola S., Cattoretti G., Shen Q., Lia M., Mo T., Ludwig T., Rajewsky K., and Dalla-Favera R.. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7:773–782. 10.1038/ni1357 PubMed DOI
Kohen, R., Barlev J., Hornung G., Stelzer G., Feldmesser E., Kogan K., Safran M., and Leshkowitz D.. 2019. UTAP: User-Friendly transcriptome analysis pipeline. BMC Bioinformatics. 20:154. 10.1186/s12859-019-2728-2 PubMed DOI PMC
Kokavec, J., Zikmund T., Savvulidi F., Kulvait V., Edelmann W., Skoultchi A.I., and Stopka T.. 2017. The ISWI ATPase Smarca5 (Snf2h) is required for proliferation and differentiation of hematopoietic stem and progenitor cells. Stem Cells. 35:1614–1623. 10.1002/stem.2604 PubMed DOI PMC
Kracker, S., Di Virgilio M., Schwartzentruber J., Cuenin C., Forveille M., Deau M.-C., McBride K.M., Majewski J., Gazumyan A., Seneviratne S., et al. . 2015. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex. J. Allergy Clin. Immunol. 135:998–1007.e6. 10.1016/j.jaci.2014.08.030 PubMed DOI PMC
Kwak, K., Akkaya M., and Pierce S.K.. 2019. B cell signaling in context. Nat. Immunol. 20:963–969. 10.1038/s41590-019-0427-9 PubMed DOI
Kwon, K., Hutter C., Sun Q., Bilic I., Cobaleda C., Malin S., and Busslinger M.. 2008. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity. 28:751–762. 10.1016/j.immuni.2008.04.014 PubMed DOI
Langmead, B., Trapnell C., Pop M., and Salzberg S.L.. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Lan, L., Ui A., Nakajima S., Hatakeyama K., Hoshi M., Watanabe R., Janicki S.M., Ogiwara H., Kohno T., Kanno S., and Yasui A.. 2010. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol. Cell. 40:976–987. 10.1016/j.molcel.2010.12.003 PubMed DOI
Lawrence, M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., Morgan M.T., and Carey V.J.. 2013. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9:e1003118. 10.1371/journal.pcbi.1003118 PubMed DOI PMC
Li, D., Wang Q., Gong N.N., Kurolap A., Feldman H.B., Boy N., Brugger M., Grand K., McWalter K., Guillen Sacoto M.J., et al. . 2021. Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. Sci. Adv. 7:eabf2066. 10.1126/sciadv.abf2066 PubMed DOI PMC
Liu, D., Xu H., Shih C., Wan Z., Ma X., Ma W., Luo D., and Qi H.. 2015. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature. 517:214–218. 10.1038/nature13803 PubMed DOI
Min, S., Jo S., Lee H.-S., Chae S., Lee J.-S., Ji J.-H., and Cho H.. 2014. ATM-dependent chromatin remodeler Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. Cell Cycle. 13:666–677. 10.4161/cc.27548 PubMed DOI
Mlynarczyk, C., Fontán L., and Melnick A.. 2019. Germinal center-derived lymphomas: The darkest side of humoral immunity. Immunol. Rev. 288:214–239. 10.1111/imr.12755 PubMed DOI PMC
Morris, S.A., Baek S., Sung M.-H., John S., Wiench M., Johnson T.A., Schiltz R.L., and Hager G.L.. 2014. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 21:73–81. 10.1038/nsmb.2718 PubMed DOI PMC
Narlikar, G.J., Sundaramoorthy R., and Owen-Hughes T.. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154:490–503. 10.1016/j.cell.2013.07.011 PubMed DOI PMC
Nutt, S.L., Taubenheim N., Hasbold J., Corcoran L.M., and Hodgkin P.D.. 2011. The genetic network controlling plasma cell differentiation. Semin. Immunol. 23:341–349. 10.1016/j.smim.2011.08.010 PubMed DOI
Ong, C.-T., and Corces V.G.. 2014. CTCF: An architectural protein bridging genome topology and function. Nat. Rev. Genet. 15:234–246. 10.1038/nrg3663 PubMed DOI PMC
Oyama, Y., Shigeta S., Tokunaga H., Tsuji K., Ishibashi M., Shibuya Y., Shimada M., Yasuda J., and Yaegashi N.. 2021. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One. 16:e0251079. 10.1371/journal.pone.0251079 PubMed DOI PMC
Papin, A., Cesarman E., and Melnick A.. 2022. 3D chromosomal architecture in germinal center B cells and its alterations in lymphomagenesis. Curr. Opin. Genet. Dev. 74:101915. 10.1016/j.gde.2022.101915 PubMed DOI PMC
Pérez-García, A., Marina-Zárate E., Álvarez-Prado Á.F., Ligos J.M., Galjart N., and Ramiro A.R.. 2017. CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nat. Commun. 8:16067. 10.1038/ncomms16067 PubMed DOI PMC
Pinto Jurado, E., Smith R., Bigot N., Chapuis C., Timinszky G., and Huet S.. 2024. The recruitment of ACF1 and SMARCA5 to DNA lesions relies on ADP-ribosylation dependent chromatin unfolding. Mol. Biol. Cell. 35:br7. 10.1091/mbc.E23-07-0281 PubMed DOI PMC
Precht, P., Wurster A.L., and Pazin M.J.. 2010. The SNF2H chromatin remodeling enzyme has opposing effects on cytokine gene expression. Mol. Immunol. 47:2038–2046. 10.1016/j.molimm.2010.04.009 PubMed DOI PMC
Quinlan, A.R., and Hall I.M.. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 26:841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Radzisheuskaya, A., Peña-Rømer I., Lorenzini E., Koche R., Zhan Y., Shliaha P.V., Cooper A.J., Fan Z., Shlyueva D., Johansen J.V., et al. . 2023. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J. 42:e114221. 10.15252/embj.2023114221 PubMed DOI PMC
Roco, J.A., Mesin L., Binder S.C., Nefzger C., Gonzalez-Figueroa P., Canete P.F., Ellyard J., Shen Q., Robert P.A., Cappello J., et al. . 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity. 51:337–350.e7. 10.1016/j.immuni.2019.07.001 PubMed DOI PMC
Saha, T., Sundaravinayagam D., and Di Virgilio M.. 2021. Charting a DNA repair roadmap for immunoglobulin class switch recombination. Trends Biochem. Sci. 46:184–199. 10.1016/j.tibs.2020.10.005 PubMed DOI
Sala, A., Toto M., Pinello L., Gabriele A., Di Benedetto V., Ingrassia A.M.R., Lo Bosco G., Di Gesù V., Giancarlo R., and Corona D.F.V.. 2011. Genome‐wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J. 30:1766–1777. 10.1038/emboj.2011.98 PubMed DOI PMC
Sanz, E., Yang L., Su T., Morris D.R., McKnight G.S., and Amieux P.S.. 2009. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA. 106:13939–13944. 10.1073/pnas.0907143106 PubMed DOI PMC
Satpathy, A.T., Granja J.M., Yost K.E., Qi Y., Meschi F., McDermott G.P., Olsen B.N., Mumbach M.R., Pierce S.E., Corces M.R., et al. . 2019. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37:925–936. 10.1038/s41587-019-0206-z PubMed DOI PMC
Schmiedel, D., Hezroni H., Hamburg A., and Shulman Z.. 2021. Brg1 supports B cell proliferation and germinal center formation through enhancer activation. Front. Immunol. 12:705848. 10.3389/fimmu.2021.705848 PubMed DOI PMC
Shih, T.-A.Y., Meffre E., Roederer M., and Nussenzweig M.C.. 2002. Role of BCR affinity in T cell dependent antibody responses in vivo. Nat. Immunol. 3:570–575. 10.1038/ni803 PubMed DOI
Shi, W., Liao Y., Willis S.N., Taubenheim N., Inouye M., Tarlinton D.M., Smyth G.K., Hodgkin P.D., Nutt S.L., and Corcoran L.M.. 2015. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16:663–673. 10.1038/ni.3154 PubMed DOI
Shlomchik, M.J., and Weisel F.. 2012. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247:52–63. 10.1111/j.1600-065X.2012.01124.x PubMed DOI
Sokpor, G., Castro-Hernandez R., Rosenbusch J., Staiger J.F., and Tuoc T.. 2018. ATP-dependent chromatin remodeling during cortical neurogenesis. Front. Neurosci. 12:226. 10.3389/fnins.2018.00226 PubMed DOI PMC
Song, W., and Craft J.. 2023. T follicular helper cell heterogeneity. Annu. Rev. Immunol. 42:127–152. 10.1146/annurev-immunol-090222-102834 PubMed DOI
Stark, G.R., and Taylor W.R.. 2004. Analyzing the G2/M checkpoint. Methods Mol. Biol. 280:51–82. 10.1385/1-59259-788-2:051 PubMed DOI
Steele, E.J., Franklin A., and Lindley R.A.. 2024. Somatic mutation patterns at Ig and non-Ig Loci. DNA Repair. 133:103607. 10.1016/j.dnarep.2023.103607 PubMed DOI
Stoler-Barak, L., Biram A., Davidzohn N., Addadi Y., Golani O., and Shulman Z.. 2019. B cell dissemination patterns during the germinal center reaction revealed by whole-organ imaging. J. Exp. Med. 216:2515–2530. 10.1084/jem.20190789 PubMed DOI PMC
Stoler-Barak, L., Harris E., Peres A., Hezroni H., Kuka M., Di Lucia P., Grenov A., Gurwicz N., Kupervaser M., Yip B.H., et al. . 2023. B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation. Nat. Commun. 14:1462. 10.1038/s41467-023-37205-5 PubMed DOI PMC
Stoler-Barak, L., and Shulman Z.. 2022. Complete visualization of T follicular helper cells in germinal centers by light sheet fluorescence microscopy. Methods Mol. Biol. 2380:3–13. 10.1007/978-1-0716-1736-6_1 PubMed DOI
Stopka, T., Zakova D., Fuchs O., Kubrova O., Blafkova J., Jelinek J., Necas E., and Zivny J.. 2000. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia. Leukemia. 14:1247–1252. 10.1038/sj.leu.2401807 PubMed DOI
Stuart, T., Srivastava A., Madad S., Lareau C.A., and Satija R.. 2021. Single-cell chromatin state analysis with Signac. Nat. Methods. 18:1333–1341. 10.1038/s41592-021-01282-5 PubMed DOI PMC
Subramanian, A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., and Mesirov J.P.. 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102:15545–15550. 10.1073/pnas.0506580102 PubMed DOI PMC
Sugimoto, N., Yugawa T., Iizuka M., Kiyono T., and Fujita M.. 2011. Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J. Biol. Chem. 286:39200–39210. 10.1074/jbc.M111.256123 PubMed DOI PMC
Thakur, S., Cahais V., Turkova T., Zikmund T., Renard C., Stopka T., Korenjak M., and Zavadil J.. 2022. Chromatin remodeler Smarca5 is required for cancer-related processes of primary cell fitness and immortalization. Cells. 11:808. 10.3390/cells11050808 PubMed DOI PMC
Toiber, D., Erdel F., Bouazoune K., Silberman D.M., Zhong L., Mulligan P., Sebastian C., Cosentino C., Martinez-Pastor B., Giacosa S., et al. . 2013. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell. 51:454–468. 10.1016/j.molcel.2013.06.018 PubMed DOI PMC
Tyagi, M., Imam N., Verma K., and Patel A.K.. 2016. Chromatin remodelers: We are the drivers!! Nucleus. 7:388–404. 10.1080/19491034.2016.1211217 PubMed DOI PMC
Victora, G.D., Dominguez-Sola D., Holmes A.B., Deroubaix S., Dalla-Favera R., and Nussenzweig M.C.. 2012. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood. 120:2240–2248. 10.1182/blood-2012-03-415380 PubMed DOI PMC
Victora, G.D., and Nussenzweig M.C.. 2022. Germinal centers. Annu. Rev. Immunol. 40:413–442. 10.1146/annurev-immunol-120419-022408 PubMed DOI
Victora, G.D., Schwickert T.A., Fooksman D.R., Kamphorst A.O., Meyer-Hermann M., Dustin M.L., and Nussenzweig M.C.. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 143:592–605. 10.1016/j.cell.2010.10.032 PubMed DOI PMC
Vilarrasa-Blasi, R., Soler-Vila P., Verdaguer-Dot N., Russiñol N., Di Stefano M., Chapaprieta V., Clot G., Farabella I., Cuscó P., Kulis M., et al. . 2021. Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat. Commun. 12:651. 10.1038/s41467-020-20849-y PubMed DOI PMC
Wang, S.K., Nair S., Li R., Kraft K., Pampari A., Patel A., Kang J.B., Luong C., Kundaje A., and Chang H.Y.. 2022. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. Cell Genom. 2:100164. 10.1016/j.xgen.2022.100164 PubMed DOI PMC
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, Berlin, Germany. 260.
Wiechens, N., Singh V., Gkikopoulos T., Schofield P., Rocha S., and Owen-Hughes T.. 2016. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12:e1005940. 10.1371/journal.pgen.1005940 PubMed DOI PMC
Zhang, C., Chen Z., Yin Q., Fu X., Li Y., Stopka T., Skoultchi A.I., and Zhang Y.. 2020. The chromatin remodeler Snf2h is essential for oocyte meiotic cell cycle progression. Genes Dev. 34:166–178. 10.1101/gad.331157.119 PubMed DOI PMC
Zhang, Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., and Liu X.S.. 2008. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9:R137. 10.1186/gb-2008-9-9-r137 PubMed DOI PMC
Zheng, G.X.Y., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., et al. . 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049. 10.1038/ncomms14049 PubMed DOI PMC
Zhou, Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., and Chanda S.K.. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10:1523. 10.1038/s41467-019-09234-6 PubMed DOI PMC
Zikmund, T., Kokavec J., Turkova T., Savvulidi F., Paszekova H., Vodenkova S., Sedlacek R., Skoultchi A.I., and Stopka T.. 2019. ISWI ATPase Smarca5 regulates differentiation of thymocytes undergoing β-selection. J. Immunol. 202:3434–3446. 10.4049/jimmunol.1801684 PubMed DOI PMC
Zikmund, T., Paszekova H., Kokavec J., Kerbs P., Thakur S., Turkova T., Tauchmanova P., Greif P.A., and Stopka T.. 2020. Loss of ISWI ATPase SMARCA5 (SNF2H) in acute myeloid leukemia cells inhibits proliferation and chromatid cohesion. Int. J. Mol. Sci. 21:2073. 10.3390/ijms21062073 PubMed DOI PMC