• This record comes from PubMed

Chromatin Remodeler Smarca5 Is Required for Cancer-Related Processes of Primary Cell Fitness and Immortalization

. 2022 Feb 25 ; 11 (5) : . [epub] 20220225

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
001 World Health Organization - International

Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.

See more in PubMed

Felsenfeld G., Groudine M. Controlling the double helix. Nature. 2003;421:448–453. doi: 10.1038/nature01411. PubMed DOI

Biegel J.A., Busse T.M., Weissman B.E. SWI/SNF chromatin remodeling complexes and cancer. Am. J. Med. Genet C Semin. Med. Genet. 2014;166:350–366. doi: 10.1002/ajmg.c.31410. PubMed DOI PMC

Wang G.G., Allis C.D., Chi P. Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 2007;13:373–380. doi: 10.1016/j.molmed.2007.07.004. PubMed DOI PMC

Lafon-Hughes L., Di Tomaso M.V., Méndez-Acuña L., Martínez-López W. Chromatin-remodelling mechanisms in cancer. Mutat. Res. 2008;658:191–214. doi: 10.1016/j.mrrev.2008.01.008. PubMed DOI

Bourdeaut F., Bièche I. Chromatin remodeling defects and cancer: The SWI/SNF example. Bull. Cancer. 2012;99:1133–1140. doi: 10.1684/bdc.2012.1664. PubMed DOI

Wolffe A.P. Chromatin remodeling: Why it is important in cancer. Oncogene. 2001;20:2988–2990. doi: 10.1038/sj.onc.1204322. PubMed DOI

Nair S.S., Kumar R. Chromatin remodeling in cancer: A gateway to regulate gene transcription. Mol. Oncol. 2012;6:611–619. doi: 10.1016/j.molonc.2012.09.005. PubMed DOI PMC

Kadoch C., Crabtree G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015;1:e1500447. doi: 10.1126/sciadv.1500447. PubMed DOI PMC

Okawa R., Banno K., Iida M., Yanokura M., Takeda T., Iijima M., Kunitomi-Irie H., Nakamura K., Adachi M., Umene K., et al. Aberrant chromatin remodeling in gynecological cancer. Oncol. Lett. 2017;14:5107–5113. doi: 10.3892/ol.2017.6891. PubMed DOI PMC

Oike T., Ogiwara H., Nakano T., Yokota J., Kohno T. Inactivating mutations in SWI/SNF chromatin remodeling genes in human cancer. Jpn. J. Clin. Oncol. 2013;43:849–855. doi: 10.1093/jjco/hyt101. PubMed DOI

Shigetomi H., Oonogi A., Tsunemi T., Tanase Y., Yamada Y., Kajihara H., Yoshizawa Y., Furukawa N., Haruta S., Yoshida S., et al. The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review) Oncol. Lett. 2011;2:591–597. doi: 10.3892/ol.2011.316. PubMed DOI PMC

Gui Y., Guo G., Huang Y., Hu X., Tang A., Gao S., Wu R., Chen C., Li X., Zhou L., et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 2011;43:875–878. doi: 10.1038/ng.907. PubMed DOI PMC

Halaburkova A., Cahais V., Novoloaca A., Araujo M., Khoueiry R., Ghantous A., Herceg Z. Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes. Genome Res. 2020;30:1517–1532. doi: 10.1101/gr.268292.120. PubMed DOI PMC

Cairns B.R. Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 2007;14:989–996. doi: 10.1038/nsmb1333. PubMed DOI PMC

Côté J., Quinn J., Workman J.L., Peterson C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 1994;265:53–60. doi: 10.1126/science.8016655. PubMed DOI

Khorasanizadeh S. The nucleosome: From genomic organization to genomic regulation. Cell. 2004;116:259–272. doi: 10.1016/S0092-8674(04)00044-3. PubMed DOI

Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009;78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223. PubMed DOI

Corona D.F., Tamkun J.W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta. 2004;1677:113–119. doi: 10.1016/j.bbaexp.2003.09.018. PubMed DOI

Collins N., Poot R.A., Kukimoto I., García-Jiménez C., Dellaire G., Varga-Weisz P.D. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 2002;32:627–632. doi: 10.1038/ng1046. PubMed DOI

Atsumi Y., Minakawa Y., Ono M., Dobashi S., Shinohe K., Shinohara A., Takeda S., Takagi M., Takamatsu N., Nakagama H., et al. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation. Cell Rep. 2015;13:2728–2740. doi: 10.1016/j.celrep.2015.11.054. PubMed DOI

Aydin Ö.Z., Vermeulen W., Lans H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle. 2014;13:3016–3025. doi: 10.4161/15384101.2014.956551. PubMed DOI PMC

Helfricht A., Wiegant W.W., Thijssen P.E., Vertegaal A.C., Luijsterburg M.S., van Attikum H. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle. 2013;12:3070–3082. doi: 10.4161/cc.26033. PubMed DOI PMC

Erdel F., Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes—Where, when and why? FEBS J. 2011;278:3608–3618. doi: 10.1111/j.1742-4658.2011.08282.x. PubMed DOI

Zhao X.C., An P., Wu X.Y., Zhang L.M., Long B., Tian Y., Chi X.Y., Tong D.Y. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1. Tumor Biol. 2016;37:7203–7212. doi: 10.1007/s13277-015-4579-4. PubMed DOI

Stopka T., Zakova D., Fuchs O., Kubrova O., Blafkova J., Jelinek J., Necas E., Zivny J. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia. Leukemia. 2000;14:1247–1252. doi: 10.1038/sj.leu.2401807. PubMed DOI

Tommasi S., Pinto R., Danza K., Pilato B., Palumbo O., Micale L., De Summa S. miR-151-5p, targeting chromatin remodeler SMARCA5, as a marker for the BRCAness phenotype. Oncotarget. 2016;7:80363–80372. doi: 10.18632/oncotarget.10345. PubMed DOI PMC

Jin Q., Mao X., Li B., Guan S., Yao F., Jin F. Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumor Biol. 2015;36:1895–1902. doi: 10.1007/s13277-014-2791-2. PubMed DOI

Gigek C.O., Lisboa L.C., Leal M.F., Silva P.N., Lima E.M., Khayat A.S., Assumpção P.P., Burbano R.R., Smith Mde A. SMARCA5 methylation and expression in gastric cancer. Cancer Investig. 2011;29:162–166. doi: 10.3109/07357907.2010.543365. PubMed DOI

Sánchez-Molina S., Mortusewicz O., Bieber B., Auer S., Eckey M., Leonhardt H., Friedl A.A., Becker P.B. Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Res. 2011;39:8445–8456. doi: 10.1093/nar/gkr435. PubMed DOI PMC

Kokavec J., Zikmund T., Savvulidi F., Kulvait V., Edelmann W., Skoultchi A.I., Stopka T. The ISWI ATPase Smarca5 (Snf2h) Is Required for Proliferation and Differentiation of Hematopoietic Stem and Progenitor Cells. Stem Cells. 2017;35:1614–1623. doi: 10.1002/stem.2604. PubMed DOI PMC

Zhang C., Chen Z., Yin Q., Fu X., Li Y., Stopka T., Skoultchi A.I., Zhang Y. The chromatin remodeler Snf2h is essential for oocyte meiotic cell cycle progression. Genes Dev. 2020;34:166–178. doi: 10.1101/gad.331157.119. PubMed DOI PMC

Stopka T., Skoultchi A.I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl. Acad. Sci. USA. 2003;100:14097–14102. doi: 10.1073/pnas.2336105100. PubMed DOI PMC

Nakamura K., Kato A., Kobayashi J., Yanagihara H., Sakamoto S., Oliveira D.V., Shimada M., Tauchi H., Suzuki H., Tashiro S., et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell. 2011;41:515–528. doi: 10.1016/j.molcel.2011.02.002. PubMed DOI

Zikmund T., Paszekova H., Kokavec J., Kerbs P., Thakur S., Turkova T., Tauchmanova P., Greif P.A., Stopka T. Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion. Int. J. Mol. Sci. 2020;21:2073. doi: 10.3390/ijms21062073. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Smeenk G., Wiegant W.W., Marteijn J.A., Luijsterburg M.S., Sroczynski N., Costelloe T., Romeijn R.J., Pastink A., Mailand N., Vermeulen W., et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J. Cell Sci. 2013;126:889–903. doi: 10.1242/jcs.109413. PubMed DOI

Iurlaro M., Stadler M.B., Masoni F., Jagani Z., Galli G.G., Schübeler D. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 2021;53:279–287. doi: 10.1038/s41588-020-00768-w. PubMed DOI

Barisic D., Stadler M.B., Iurlaro M., Schübeler D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 2019;569:136–140. doi: 10.1038/s41586-019-1115-5. PubMed DOI PMC

Hahn W.C., Weinberg R.A. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer. 2002;2:331–341. doi: 10.1038/nrc795. PubMed DOI

Odell A., Askham J., Whibley C., Hollstein M. How to become immortal: Let MEFs count the ways. Aging. 2010;2:160–165. doi: 10.18632/aging.100129. PubMed DOI PMC

Olivier M., Weninger A., Ardin M., Huskova H., Castells X., Vallée M.P., McKay J., Nedelko T., Muehlbauer K.-R., Marusawa H., et al. Modelling mutational landscapes of human cancers in vitro. Sci. Rep. 2014;4:4482. doi: 10.1038/srep04482. PubMed DOI PMC

Korenjak M., Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci. 2019;110:3622–3629. doi: 10.1111/cas.14210. PubMed DOI PMC

Huskova H., Ardin M., Weninger A., Vargova K., Barrin S., Villar S., Olivier M., Stopka T., Herceg Z., Hollstein M., et al. Modeling cancer driver events in vitro using barrier bypass-clonal expansion assays and massively parallel sequencing. Oncogene. 2017;36:6041–6048. doi: 10.1038/onc.2017.215. PubMed DOI PMC

Dluhosova M., Curik N., Vargova J., Jonasova A., Zikmund T., Stopka T. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5. PLoS ONE. 2014;9:e87448. doi: 10.1371/journal.pone.0087448. PubMed DOI PMC

Wiechens N., Singh V., Gkikopoulos T., Schofield P., Rocha S., Owen-Hughes T. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet. 2016;12:e1005940. doi: 10.1371/journal.pgen.1005940. PubMed DOI PMC

Hayashi S., McMahon A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 2002;244:305–318. doi: 10.1006/dbio.2002.0597. PubMed DOI

Corces M.R., Trevino A.E., Hamilton E.G., Greenside P.G., Sinnott-Armstrong N.A., Vesuna S., Satpathy A.T., Rubin A.J., Montine K.S., Wu B., et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods. 2017;14:959–962. doi: 10.1038/nmeth.4396. PubMed DOI PMC

Buenrostro J.D., Wu B., Chang H.Y., Greenleaf W.J. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr. Protoc. Mol. Biol. 2015;109:21.29.21–21.29.29. doi: 10.1002/0471142727.mb2129s109. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Faust G.G., Hall I.M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics. 2014;30:2503–2505. doi: 10.1093/bioinformatics/btu314. PubMed DOI PMC

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., et al. Model-based Analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC

Qunhua L., James B.B., Haiyan H., Peter J.B. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 2011;5:1752–1779. doi: 10.1214/11-AOAS466. DOI

Frankish A., Diekhans M., Ferreira A.-M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J., et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–D773. doi: 10.1093/nar/gky955. PubMed DOI PMC

Weddington N., Stuy A., Hiratani I., Ryba T., Yokochi T., Gilbert D.M. ReplicationDomain: A visualization tool and comparative database for genome-wide replication timing data. BMC Bioinform. 2008;9:530. doi: 10.1186/1471-2105-9-530. PubMed DOI PMC

Moore J.E., Purcaro M.J., Pratt H.E., Epstein C.B., Shoresh N., Adrian J., Kawli T., Davis C.A., Dobin A., Kaul R., et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710. doi: 10.1038/s41586-020-2493-4. PubMed DOI PMC

Schoenfelder S., Furlan-Magaril M., Mifsud B., Tavares-Cadete F., Sugar R., Javierre B.M., Nagano T., Katsman Y., Sakthidevi M., Wingett S.W., et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 2015;25:582–597. doi: 10.1101/gr.185272.114. PubMed DOI PMC

Machlab D., Burger L., Soneson C., Rijli F.M., Schübeler D., Stadler M.B. monaLisa: An R/Bioconductor package for identifying regulatory motifs. bioRxiv. 2021 doi: 10.1093/bioinformatics/btac102. PubMed DOI PMC

Rio D.C., Ares M., Jr., Hannon G.J., Nilsen T.W. Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Pavlidis P., Noble W.S. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol. 2001;2:research0042. doi: 10.1186/gb-2001-2-10-research0042. PubMed DOI PMC

Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–378. doi: 10.2144/03342mt01. PubMed DOI

Howe E., Holton K., Nair S., Schlauch D., Sinha R., Quackenbush J. MeV: MultiExperiment Viewer. In: Ochs M.F., Casagrande J.T., Davuluri R.V., editors. Biomedical Informatics for Cancer Research. Springer; Boston, MA, USA: 2010. pp. 267–277.

Huang W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:e16. doi: 10.1093/nar/gkn923. PubMed DOI PMC

Sondka Z., Bamford S., Cole C.G., Ward S.A., Dunham I., Forbes S.A. The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers. Nat. Rev. Cancer. 2018;18:696–705. doi: 10.1038/s41568-018-0060-1. PubMed DOI PMC

Martínez-Jiménez F., Muiños F., Sentís I., Deu-Pons J., Reyes-Salazar I., Arnedo-Pac C., Mularoni L., Pich O., Bonet J., Kranas H., et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer. 2020;20:555–572. doi: 10.1038/s41568-020-0290-x. PubMed DOI

Bailey M.H., Tokheim C., Porta-Pardo E., Sengupta S., Bertrand D., Weerasinghe A., Colaprico A., Wendl M.C., Kim J., Reardon B., et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;173:371–385.e18. doi: 10.1016/j.cell.2018.02.060. PubMed DOI PMC

Warde-Farley D., Donaldson S.L., Comes O., Zuberi K., Badrawi R., Chao P., Franz M., Grouios C., Kazi F., Lopes C.T., et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–W220. doi: 10.1093/nar/gkq537. PubMed DOI PMC

Celis J.E., Carter N., Simons K., Small J.V., Hunter T., Shotton D. Cell Biology: A Laboratory Handbook. Elsevier; Amsterdam, The Netherlands: 2005.

Mehic D., Bakiri L., Ghannadan M., Wagner E.F., Tschachler E. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J. Investig. Derm. 2005;124:212–220. doi: 10.1111/j.0022-202X.2004.23558.x. PubMed DOI

Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1991;1072:129–157. doi: 10.1016/0304-419X(91)90011-9. PubMed DOI

Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–3956. doi: 10.1038/onc.2016.502. PubMed DOI PMC

Whibley C., Odell A., Nedelko T., Balaburski G., Murphy M., Liu Z., Stevens L., Walker J., Routledge M., Hollstein M. Wild-type and Hupki (human p53 knock-in) murine embryonic fibroblasts: p53/ARF pathway disruption in spontaneous escape from senescence. J. Biol. Chem. 2010;285:11326–11335. doi: 10.1074/jbc.M109.064444. PubMed DOI PMC

Toiber D., Erdel F., Bouazoune K., Silberman D.M., Zhong L., Mulligan P., Sebastian C., Cosentino C., Martinez-Pastor B., Giacosa S., et al. SIRT6 Recruits SNF2H to DNA Break Sites, Preventing Genomic Instability through Chromatin Remodeling. Mol. Cell. 2013;51:454–468. doi: 10.1016/j.molcel.2013.06.018. PubMed DOI PMC

Lan L., Ui A., Nakajima S., Hatakeyama K., Hoshi M., Watanabe R., Janicki S.M., Ogiwara H., Kohno T., Kanno S., et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol. Cell. 2010;40:976–987. doi: 10.1016/j.molcel.2010.12.003. PubMed DOI

Parrinello S., Samper E., Krtolica A., Goldstein J., Melov S., Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 2003;5:741–747. doi: 10.1038/ncb1024. PubMed DOI PMC

Sugimoto N., Yugawa T., Iizuka M., Kiyono T., Fujita M. Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J. Biol. Chem. 2011;286:39200–39210. doi: 10.1074/jbc.M111.256123. PubMed DOI PMC

Bhaskara S., Jacques V., Rusche J.R., Olson E.N., Cairns B.R., Chandrasekharan M.B. Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin. 2013;6:27. doi: 10.1186/1756-8935-6-27. PubMed DOI PMC

Ding Y., Wang W., Ma D., Liang G., Kang Z., Xue Y., Zhang Y., Wang L., Heng J., Zhang Y., et al. Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood. 2021;137:190–202. doi: 10.1182/blood.2020005219. PubMed DOI PMC

Shibayama Y., Takahashi K., Yamaguchi H., Yasuda J., Yamazaki D., Rahman A., Fujimori T., Fujisawa Y., Takai S., Furukawa T., et al. Aberrant (pro)renin receptor expression induces genomic instability in pancreatic ductal adenocarcinoma through upregulation of SMARCA5/SNF2H. Commun. Biol. 2020;3:724. doi: 10.1038/s42003-020-01434-x. PubMed DOI PMC

Tan Y., Zhang T., Liang C. Circular RNA SMARCA5 is overexpressed and promotes cell proliferation, migration as well as invasion while inhibits cell apoptosis in bladder cancer. Transl. Cancer Res. 2019;8:1663–1671. doi: 10.21037/tcr.2019.08.08. PubMed DOI PMC

Erdel F., Schubert T., Marth C., Längst G., Rippe K. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl. Acad. Sci. USA. 2010;107:19873–19878. doi: 10.1073/pnas.1003438107. PubMed DOI PMC

Ström L., Lindroos H.B., Shirahige K., Sjögren C. Postreplicative Recruitment of Cohesin to Double-Strand Breaks Is Required for DNA Repair. Mol. Cell. 2004;16:1003–1015. doi: 10.1016/j.molcel.2004.11.026. PubMed DOI

Nasmyth K., Haering C.H. Cohesin: Its roles and mechanisms. Annu. Rev. Genet. 2009;43:525–558. doi: 10.1146/annurev-genet-102108-134233. PubMed DOI

Hakimi M.A., Bochar D.A., Schmiesing J.A., Dong Y., Barak O.G., Speicher D.W., Yokomori K., Shiekhattar R. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature. 2002;418:994–998. doi: 10.1038/nature01024. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...