Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop (Humulus lupulus L.)

. 2019 Dec 29 ; 21 (1) : . [epub] 20191229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31905722

Grantová podpora
GACR 19-19629S Czech Science Foundation GACR
CZ.02.2.69/0.0/0.0/16_027/0008357 MEMOBIC (EU Operational Programme Research, Development and Education)
RVO:60077344 institutional support

The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.

Zobrazit více v PubMed

Yoshimaru T., Komatsu M., Tashiro E., Imoto M., Osada H., Miyoshi Y., Honda J., Sasa M., Katagiri T. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci. Rep. 2014;4:7355. doi: 10.1038/srep07355. PubMed DOI PMC

Quiñones M., Miguel M., Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 2013;68:125–131. doi: 10.1016/j.phrs.2012.10.018. PubMed DOI

Omar M.M. Phenolic Compounds in Food and Their Effects on Health I. Volume 506. American Chemical Society; Washington, WA, USA: 1992. Phenolic Compounds in Botanical Extracts Used in Foods, Flavors, Cosmetics, and Pharmaceuticals; pp. 154–168. (ACS Symposium Series).

Hartkorn A., Hoffmann F., Ajamieh H., Vogel S., Heilmann J., Gerbes A.L., Vollmar A.M., Zahler S. Antioxidant Effects of Xanthohumol and Functional Impact on Hepatic Ischemia−Reperfusion Injury. J. Nat. Prod. 2009;72:1741–1747. doi: 10.1021/np900230p. PubMed DOI

Obara K., Mizutani M., Hitomi Y., Yajima H., Kondo K. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr. 2009;28:278–284. doi: 10.1016/j.clnu.2009.03.012. PubMed DOI

Raza S.S., Khan M.M., Ahmad A., Ashafaq M., Islam F., Wagner A.P., Safhi M.M., Islam F. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience. 2013;230:157–171. doi: 10.1016/j.neuroscience.2012.10.041. PubMed DOI

Franco L., Sánchez C., Bravo R., Rodriguez A., Barriga C., Juánez J. The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 2012;99:133–139. doi: 10.1556/APhysiol.99.2012.2.6. PubMed DOI

Sugiyama R., Oda H., Kurosaki F. Two distinct phases of glandular trichome development in hop (Humulus lupulus L.) Plant Biotechnol. 2006;23:493–496. doi: 10.5511/plantbiotechnology.23.493. DOI

Nagel J., Culley L.K., Lu Y., Liu E., Matthews P.D., Stevens J.F., Page J.E. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 2008;20:186–200. doi: 10.1105/tpc.107.055178. PubMed DOI PMC

Larkin J.C., Brown M.L., Schiefelbein J. How Do Cells Know What They Want to Be When They Grow Up? Lessons from Epidermal Patterning in Arabidopsis. Annu. Rev. Plant Biol. 2003;54:403–430. doi: 10.1146/annurev.arplant.54.031902.134823. PubMed DOI

Turner G.W., Gershenzon J., Croteau R.B. Development of Peltate Glandular Trichomes of Peppermint. Plant Physiol. 2000;124:665–680. doi: 10.1104/pp.124.2.665. PubMed DOI PMC

Bergau N., Bennewitz S., Syrowatka F., Hause G., Tissier A. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol. 2015;15:289. doi: 10.1186/s12870-015-0678-z. PubMed DOI PMC

Liu X., Bartholomew E., Cai Y., Ren H. Trichome-Related Mutants Provide a New Perspective on Multicellular Trichome Initiation and Development in Cucumber (Cucumis sativus L) Front. Plant Sci. 2016;7:1187. doi: 10.3389/fpls.2016.01187. PubMed DOI PMC

Zhao M., Morohashi K., Hatlestad G., Grotewold E., Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development. 2008;135:1991–1999. doi: 10.1242/dev.016873. PubMed DOI

Glover B.J., Perez-Rodriguez M., Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development. 1998;125:3497–3508. PubMed

Yang S., Miao H., Zhang S., Cheng Z., Zhou J., Dong S., Wehner T.C., Gu X. Genetic Analysis and Mapping of gl-2 Gene in Cucumber(Cucumis sativus L.) Acta Hortic. Sin. 2011;38:1685–1692.

Li Q., Cao C., Zhang C., Zheng S., Wang Z., Wang L., Ren Z. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. J. Exp. Bot. 2015;66:2515–2526. doi: 10.1093/jxb/erv046. PubMed DOI

Cui J.-Y., Miao H., Ding L.-H., Wehner T.C., Liu P.-N., Wang Y., Zhang S.-P., Gu X.-F. A New Glabrous Gene (csgl3) Identified in Trichome Development in Cucumber (Cucumis sativus L.) PLoS ONE. 2016;11:e0148422. doi: 10.1371/journal.pone.0148422. PubMed DOI PMC

Ma D., Hu Y., Yang C., Liu B., Fang L., Wan Q., Liang W., Mei G., Wang L., Wang H., et al. Genetic basis for glandular trichome formation in cotton. Nat. Commun. 2016;7:10456. doi: 10.1038/ncomms10456. PubMed DOI PMC

Liu Y., Liu D., Hu R., Hua C., Ali I., Zhang A., Liu B., Wu M., Huang L., Gan Y. AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochem. Biophys. Res. Commun. 2017;483:209–215. doi: 10.1016/j.bbrc.2016.12.164. PubMed DOI

Li C.-F., Zhu Y., Yu Y., Zhao Q.-Y., Wang S.-J., Wang X.-C., Yao M.-Z., Luo D., Li X., Chen L., et al. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis) BMC Genom. 2015;16:560. doi: 10.1186/s12864-015-1773-0. PubMed DOI PMC

MATOUSEK J., VRBA L., SKOPEK J., ORCTOVA L., PESINA K., Heyerick A., BAULCOMBE D., De Keukeleire D. Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J. Agric. Food Chem. 2006;54:7606–7615. doi: 10.1021/jf061785g. PubMed DOI

Tsurumaru Y., Sasaki K., Miyawaki T., Uto Y., Momma T., Umemoto N., Momose M., Yazaki K. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem. Biophys. Res. Commun. 2012;417:393–398. doi: 10.1016/j.bbrc.2011.11.125. PubMed DOI

Matoušek J., Kocábek T., Patzak J., Stehlík J., Füssy Z., Krofta K., Heyerick A., Roldán-Ruiz I., Maloukh L., Keukeleire D. De Cloning and Molecular Analysis of HlbZip1 and HlbZip2 Transcription Factors Putatively Involved in the Regulation of the Lupulin Metabolome in Hop (Humulus lupulus L.) J. Agric. Food Chem. 2010;58:902–912. doi: 10.1021/jf9043106. PubMed DOI

Matoušek J., Kocábek T., Patzak J., Füssy Z., Procházková J., Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.) BMC Plant Biol. 2012;12:27. doi: 10.1186/1471-2229-12-27. PubMed DOI PMC

Matoušek J., Kocábek T., Patzak J., Bříza J., Siglová K., Mishra A.K., Duraisamy G.S., Týcová A., Ono E., Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol. Biol. 2016;92:263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI

Mishra A.K., Duraisamy G.S., Khare M., Kocábek T., Jakse J., Bříza J., Patzak J., Sano T., Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genom. 2018;19:739. doi: 10.1186/s12864-018-5125-8. PubMed DOI PMC

Kocábek T., Mishra A.K., Matoušek J., Patzak J., Lomnická A., Khare M., Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.) Plant Sci. 2018;269:32–46. doi: 10.1016/j.plantsci.2018.01.004. PubMed DOI

Kalra S., Puniya B.L., Kulshreshtha D., Kumar S., Kaur J., Ramachandran S., Singh K. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum. PLoS ONE. 2013;8:e83336. doi: 10.1371/journal.pone.0083336. PubMed DOI PMC

Devi K., Mishra S.K., Sahu J., Panda D., Modi M.K., Sen P. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Sci. Rep. 2016;6:21026. doi: 10.1038/srep21026. PubMed DOI PMC

Loke K.-K., Rahnamaie-Tajadod R., Yeoh C.-C., Goh H.-H., Mohamed-Hussein Z.-A., Mohd Noor N., Zainal Z., Ismail I. RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genom. Data. 2015;7:12–13. doi: 10.1016/j.gdata.2015.11.003. PubMed DOI PMC

Pokorn T., Radišek S., Javornik B., Štajner N., Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE. 2017;12:e0184528. doi: 10.1371/journal.pone.0184528. PubMed DOI PMC

Considine M.J., Foyer C.H. Redox regulation of plant development. Antioxid. Redox Signal. 2014;21:1305–1326. doi: 10.1089/ars.2013.5665. PubMed DOI PMC

Camara B., Bouvier F. Oxidative remodeling of plastid carotenoids. Arch. Biochem. Biophys. 2004;430:16–21. doi: 10.1016/j.abb.2004.06.028. PubMed DOI

Clark S.M., Vaitheeswaran V., Ambrose S.J., Purves R.W., Page J.E. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus) BMC Plant Biol. 2013;13:12. doi: 10.1186/1471-2229-13-12. PubMed DOI PMC

Hölzer M., Marz M. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience. 2019;8:giz039. doi: 10.1093/gigascience/giz039. PubMed DOI PMC

OKADA Y., ITO K. Cloning and Analysis of Valerophenone Synthase Gene Expressed Specifically in Lupulin Gland of Hop (Humulus lupulus L.) Biosci. Biotechnol. Biochem. 2001;65:150–155. doi: 10.1271/bbb.65.150. PubMed DOI

Binder S., Knill T., Schuster J. Branched-chain amino acid metabolism in higher plants. Physiol. Plant. 2007;129:68–78. doi: 10.1111/j.1399-3054.2006.00800.x. DOI

Zheng X., Xu H., Ma X., Zhan R., Chen W. Triterpenoid saponin biosynthetic pathway profiling and candidate gene mining of the Ilex asprella root using RNA-Seq. Int. J. Mol. Sci. 2014;15:5970–5987. doi: 10.3390/ijms15045970. PubMed DOI PMC

Weitzel C., Simonsen H.T. Cytochrome P450-enzymes involved in the biosynthesis of mono-and sesquiterpenes. Phytochem. Rev. 2015;14:7–24. doi: 10.1007/s11101-013-9280-x. DOI

Lynch J.H., Orlova I., Zhao C., Guo L., Jaini R., Maeda H., Akhtar T., Cruz-Lebron J., Rhodes D., Morgan J., et al. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. Plant J. 2017;92:939–950. doi: 10.1111/tpj.13730. PubMed DOI

Gatica-Arias A., Farag M.A., Stanke M., Matoušek J., Wessjohann L., Weber G. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Rep. 2012;31:111–119. doi: 10.1007/s00299-011-1144-5. PubMed DOI

Tohge T., Watanabe M., Hoefgen R., Fernie A.R. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 2013;4:62. doi: 10.3389/fpls.2013.00062. PubMed DOI PMC

Schilmiller A.L., Last R.L., Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 2008;54:702–711. doi: 10.1111/j.1365-313X.2008.03432.x. PubMed DOI

Jirschitzka J., Schmidt G.W., Reichelt M., Schneider B., Gershenzon J., D’Auria J.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA. 2012;109:10304–10309. doi: 10.1073/pnas.1200473109. PubMed DOI PMC

Negri G., di Santi D., Tabach R. Bitter acids from hydroethanolic extracts of Humulus lupulus L., Cannabaceae, used as anxiolytic. Rev. Bras. Farmacogn. 2010;20:850–859. doi: 10.1590/S0102-695X2010005000051. DOI

Jing F., Cantu D.C., Tvaruzkova J., Chipman J.P., Nikolau B.J., Yandeau-Nelson M.D., Reilly P.J. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem. 2011;12:44. doi: 10.1186/1471-2091-12-44. PubMed DOI PMC

Huchelmann A., Boutry M., Hachez C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiol. 2017;175:6–22. doi: 10.1104/pp.17.00727. PubMed DOI PMC

Wang G., Tian L., Aziz N., Broun P., Dai X., He J., King A., Zhao P.X., Dixon R.A. Terpene Biosynthesis in Glandular Trichomes of Hop. Plant Physiol. 2008;148:1254–1266. doi: 10.1104/pp.108.125187. PubMed DOI PMC

Schellmann S., Schnittger A., Kirik V., Wada T., Okada K., Beermann A., Thumfahrt J., Jürgens G., Hülskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 2002;21:5036–5046. doi: 10.1093/emboj/cdf524. PubMed DOI PMC

Saddic L.A., Huvermann B., Bezhani S., Su Y., Winter C.M., Kwon C.S., Collum R.P., Wagner D. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development. 2006;133:1673–1682. doi: 10.1242/dev.02331. PubMed DOI

Zhao J.-L., Pan J.-S., Guan Y., Nie J.-T., Yang J.-J., Qu M.-L., He H.-L., Cai R. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics. 2015;105:296–303. doi: 10.1016/j.ygeno.2015.01.010. PubMed DOI

Wang Z., Yang Z., Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol. J. 2019;17:1706–1722. doi: 10.1111/pbi.13167. PubMed DOI PMC

Traw M.B., Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 2003;133:1367–1375. doi: 10.1104/pp.103.027086. PubMed DOI PMC

Kazama H., Dan H., Imaseki H., Wasteneys G.O. Transient Exposure to Ethylene Stimulates Cell Division and Alters the Fate and Polarity of Hypocotyl Epidermal Cells. Plant Physiol. 2004;134:1614–1623. doi: 10.1104/pp.103.031088. PubMed DOI PMC

Zhou Z., Sun L., Zhao Y., An L., Yan A., Meng X., Gan Y. Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol. 2013;198:699–708. doi: 10.1111/nph.12211. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644. doi: 10.1038/nbt.1883. PubMed DOI PMC

Natsume S., Takagi H., Shiraishi A., Murata J., Toyonaga H., Patzak J., Takagi M., Yaegashi H., Uemura A., Mitsuoka C., et al. The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing. Plant Cell Physiol. 2014;56:428–441. doi: 10.1093/pcp/pcu169. PubMed DOI

Iwata H., Gotoh O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012;40:e161. doi: 10.1093/nar/gks708. PubMed DOI PMC

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Conesa A., Götz S., García-Gómez J.M., Terol J., Talón M., Robles M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI

Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., et al. Pfam: The protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Iseli C., Jongeneel C.V., Bucher P. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1999:138–148. PubMed

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Zhao S., Guo Y., Sheng Q., Shyr Y. Advanced Heat Map and Clustering Analysis Using Heatmap3. Biomed Res. Int. 2014:986048. doi: 10.1155/2014/986048. PubMed DOI PMC

Du Z., Zhou X., Ling Y., Zhang Z., Su Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–W70. doi: 10.1093/nar/gkq310. PubMed DOI PMC

Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Lohse M., Nagel A., Herter T., May P., Schroda M., Zrenner R., Tohge T., Fernie A.R., Stitt M., Usadel B. Mercator: A fast and simple web server for genome scale functional annotation of plant sequence data. Plant. Cell Environ. 2014;37:1250–1258. doi: 10.1111/pce.12231. PubMed DOI

Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Selbig J., Müller L.A., Rhee S.Y., Stitt M. mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developmental regulation of lupulin gland-associated genes in aromatic and bitter hops (Humulus lupulus L.)

. 2021 Nov 13 ; 21 (1) : 534. [epub] 20211113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...