Transformation of Seed Non-Transmissible Hop Viroids in Nicotiana benthamiana Causes Distortions in Male Gametophyte Development

. 2021 Nov 06 ; 10 (11) : . [epub] 20211106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834761

Grantová podpora
GACR 18-10515J Czech Science Foundation
DFG STE 465 Deutsche Forschungsgemeinschaft

Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that "forcing" overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.

Zobrazit více v PubMed

Hafidh S., Honys D. Reproduction Multitasking: The Male Gametophyte. Annu. Rev. Plant Biol. 2021;72:581–614. doi: 10.1146/annurev-arplant-080620-021907. PubMed DOI

Brewbaker J.L. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the Angiosperms. Amer. J. Bot. 1967;54:1069–1083. doi: 10.1002/j.1537-2197.1967.tb10735.x. DOI

McCormick S. Male gametophyte development. Plant Cell. 1993;5:1265–1275. doi: 10.2307/3869779. PubMed DOI PMC

Hafidh S., Potešil D., Fíla J., Čapková V., Zdráhal Z., Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC

Slotkin R., Vaughn M., Borges F., Tanurdzi M., Becker J., Feijó J., Martienssen R. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC

Matoušek J., Orctová L., Škopek J., Pešina K., Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol. Chem. 2008;389:905–918. doi: 10.1515/BC.2008.096. PubMed DOI

Matoušek J., Steinbachová L., Záveská Drábková L., Kocábek T., Potěšil D., Mishra A., Honys D., Steger G. Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int. J. Mol. Sci. 2020;21:3029. doi: 10.3390/ijms21083029. PubMed DOI PMC

Diener T. Origin and evolution of viroids and viroid-like satellite RNAs. Virus Genes. 1995;11:119–131. doi: 10.1007/BF01728653. PubMed DOI

Flores R., Hernández C., Martínez de Alba A.E., Daròs J.A., Di Serio F. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005;43:117–139. doi: 10.1146/annurev.phyto.43.040204.140243. PubMed DOI

Venkataraman S., Badar U., Shoeb E., Hashim G., Abouhaidar M., Hefferon K. An inside look into biological miniatures: Molecular mechanisms of viroids. Int. J. Mol. Sci. 2021;22:2795. doi: 10.3390/ijms22062795. PubMed DOI PMC

Sano T. In: Compendium of Hop Disease and Pests. Mahaffee W., Pethybridge S., Gent D.H., editors. American Phytopathological Society; St. Paul, MI, USA: 2009. pp. 39–132.

Jakše J., Radišek S., Pokorn T., Matoušek J., Javornik B. Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015;64:831–842. doi: 10.1111/ppa.12325. DOI

Schindler I.M., Mühlbach H.P. Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: A reevaluation. Plant Sci. 1992;84:221–229. doi: 10.1016/0168-9452(92)90138-C. DOI

Zhong X., Archual A.J., Amin A.A., Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell. 2008;20:35–47. doi: 10.1105/tpc.107.056606. PubMed DOI PMC

Jiang D., Wang M., Li S. Functional analysis of a viroid RNA motif mediating cell-to-cell movement in Nicotiana benthamiana. J. Gen. Virol. 2017;98:121–125. doi: 10.1099/jgv.0.000630. PubMed DOI

Wassenegger M., Spieker R.L., Thalmeir S., Riedel L., Sänger H.L. A single nucleotide substitution converts Potato spindle tuber viroid (PSTVd) from a noninfectious to an infectious RNA for Nicotiana tabacum. Virology. 1996;226:191–197. doi: 10.1006/viro.1996.0646. PubMed DOI

Matsushita Y., Yanagisawa H., Sano T. Vertical and horizontal transmission of Pospiviroids. Viruses. 2018;10:706. doi: 10.3390/v10120706. PubMed DOI PMC

Desjardins P., Drake R., Atkins E., Bergh B. Pollen transmission of avocado sunblotch virus experimentally demonstrated. Calif. Agric. 1979;33:14–15.

Kryczynski S., Paduch-Cichal E., Skrzeczkowski L. Transmission of three viroids through seed and pollen of tomato plants. J. Phytopathol. 1988;121:51–57. doi: 10.1111/j.1439-0434.1988.tb00952.x. DOI

Singh R., Boucher A., Somerville T. Detection of potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis. 1992;76:951–953. doi: 10.1094/PD-76-0951. DOI

Mink G. Pollen and seed-transmitted viruses and viroids. Annu. Rev. Phytopathol. 1993;31:375–402. doi: 10.1146/annurev.py.31.090193.002111. PubMed DOI

Pacumbaba E., Zelazny B., Orense J., Rillo E. Evidence for pollen and seed transmission of the coconut cadang-cadang viroid in Cocos nucifera. J. Phytopathol. 1994;142:37–42. doi: 10.1111/j.1439-0434.1994.tb00005.x. DOI

Yanagisawa H., Sano T., Hase S., Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology. 2018;526:22–31. doi: 10.1016/j.virol.2018.09.021. PubMed DOI

Castellano M., Martinez G., Marques M.C., Moreno-Romero J., Köhler C., Pallas V., Gomez G. Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. J. Exp. Bot. 2016;67:5857–5868. doi: 10.1093/jxb/erw353. PubMed DOI PMC

Shrestha A., Mishra A.K., Matoušek J., Steinbachová L., Potměšil D., Nath V.S., Awasthi P., Kocábek T., Jakše J., Záveská Drábková L., et al. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int. J. Mol. Sci. 2020;21:8700. doi: 10.3390/ijms21228700. PubMed DOI PMC

Matoušek J., Siglová K., Jakše J., Radišek S., Tsushima T., Brass J.R., Guček T., Duraisamy G., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. doi: 10.1016/j.jplph.2017.02.014. PubMed DOI

Tupý J., Süss J., Hrabětová E., Říhová L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 1983;25:231. doi: 10.1007/BF02902110. DOI

Honys D., Reňák D., Twell D. Male gametophyte development and function. In: da Silva J.A.T., editor. Floriculture, Ornamental and Plant Biotechnology-Advances and Topical Issues. I. Global Science Books Ltd.; Ikenobe, Japan: 2006. pp. 76–87.

Matoušek J., Trněná L., Svoboda P., Oriniaková P., Lichtenstein C.P. The gradual reduction of viroid levels in hop mericlones following heat therapy: A possible role for a nuclease degrading dsRNA. Biol. Chem. Hoppe-Seyler. 1995;376:715–721. doi: 10.1515/bchm3.1995.376.12.715. PubMed DOI

Matoušek J., Patzak J. A low transmissibility of hop latent viroid through a generative phase of Humulus lupulus L. Biol. Plant. 2000;43:145–148. doi: 10.1023/A:1026531819806. DOI

Fernow K.H., Peterson L.C., Plaisted R.L. Spindle tuber virus in seeds and pollen of infected potato plants. Am. Potato J. 1970;47:75–80. doi: 10.1007/BF02864807. DOI

Matsushita Y., Tsuda S. Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. Eur. J. Plant Pathol. 2016;145:1007–1011. doi: 10.1007/s10658-016-0868-z. DOI

Verhoeven J.T.J., Botermans M., Roenhorst J.W., Westerhof J., Meekes E.T.M. First Report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) from Turkey and Germany. Plant Dis. 2009;93:316. doi: 10.1094/PDIS-93-3-0316A. PubMed DOI

Matoušek J., Kozlová P., Orctová L., Schmitz A., Pešina K., Bannach O., Diermann D., Steger G., Riesner D. Accumulation of viroid-specific small RNAs and increase of nucleolytic activities linked to viroid-caused pathogenesis. Biol. Chem. 2007;388:1–13. doi: 10.1515/BC.2007.001. PubMed DOI

Keese P., Symons R.H. Domains in viroids: Evidence of intermolecular RNA rearrangement and their contribution to viroid evolution. Proc. Natl. Acad. Sci. USA. 1985;82:4582–4586. doi: 10.1073/pnas.82.14.4582. PubMed DOI PMC

Zhong X., Tao X., Stombaugh J., Leontis N., Ding B. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J. 2007;26:3836–3846. doi: 10.1038/sj.emboj.7601812. PubMed DOI PMC

Wu J., Zhou C., Li J., Li C., Tao X., Leontis N.B., Zirbel C., Bisaro D.M., Ding B. Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious non-coding viroid RNA. Nucl. Acids Res. 2020;48:3134–3155. doi: 10.1093/nar/gkaa100. PubMed DOI PMC

Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z., et al. Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC

Matoušek J., Piernikarczyk R., Týcová A., Duraisamy G., Kocábek T., Steger G. Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection. J. Plant Physiol. 2015;183:85–94. doi: 10.1016/j.jplph.2015.06.001. PubMed DOI

Horsch R., Fry J., Hoffman N., Eichholtz D., Rogers S., Fraley R. A simple and general method for transferring genes into plants. Science. 1985;227:1229–1231. doi: 10.1126/science.227.4691.1229. PubMed DOI

Matoušek J., Schröder A.R.W., Trněná L., Reimers M., Baumstark T., Dědič P., Vlasák J., Becker I., Kreuzaler F., Fladung M., et al. Inhibition of viroid infection by antisense RNA expression in transgenic plants. Biol. Chem. Hoppe-Seyler. 1994;375:765–777. doi: 10.1515/bchm3.1994.375.11.765. PubMed DOI

Palukaitis P., Cotts S., Zaitlin M. Detection and identification of viroids and viral nucleic acids by “dot-blot” hybridization. Acta Hortic. 1985;164:109–118. doi: 10.17660/ActaHortic.1985.164.12. DOI

Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Matoušek J., Junker V., Vrba L., Schubert J., Patzak J., Steger G. Molecular characterization and genome organization of 7 SL RNA genes from hop (Humulus lupulus L.) Gene. 1999;239:173–183. doi: 10.1016/S0378-1119(99)00352-2. PubMed DOI

Viral Genome Browser (Pospiviroidae) [(accessed on 26 May 2021)]; Available online: https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=185751.

Brister J.R., Ako-Adjei D., Bao Y., Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D577. doi: 10.1093/nar/gku1207. PubMed DOI PMC

Morgulis A., Coulouris G., Raytselis Y., Madden T., Agarwala R., Schäffer A. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24:1757–1764. doi: 10.1093/bioinformatics/btn322. PubMed DOI PMC

Katoh K., Rozewicki J., Yamada K. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017 doi: 10.1093/bib/bbx108. PubMed DOI PMC

Katoh K., Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:212. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC

Wilm A., Linnenbrink K., Steger G. ConStruct: Improved construction of RNA consensus structures. BMC Bioinform. 2008;9:219. doi: 10.1186/1471-2105-9-219. PubMed DOI PMC

Gruber A., Lorenz R., Bernhart S., Neuböck R., Hofacker I. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC

Weinberg Z., Breaker R. R2R–software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinform. 2011;12:3. doi: 10.1186/1471-2105-12-3. PubMed DOI PMC

Matoušek J., Kocábek T., Patzak J., Bříza J., Siglová K., Mishra A., Duraisamy G., Týcová A., Ono E., Krofta K. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.) Plant Mol. Biol. 2016;92:263–277. doi: 10.1007/s11103-016-0510-7. PubMed DOI

Matoušek J., Stehlík J., Procházková J., Orctová L., Wullenweber J., Füssy Z., Kováčik J., Duraisamy G.S., Ziegler A., Schubert J., et al. Biological and molecular analysis of the pathogenic variant C3 of potato spindle tuber viroid (PSTVd) evolved during adaptation to chamomile (Matricaria chamomilla) Biol. Chem. 2012;393:605–615. doi: 10.1515/hsz-2011-0286. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...