"Pathomorphogenic" Changes Caused by Citrus Bark Cracking Viroid and Transcription Factor TFIIIA-7ZF Variants Support Viroid Propagation in Tobacco
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
STE465
Deutsche Forschungsgemeinschaft
18-10515J
Czech Science Foundation
PubMed
37175498
PubMed Central
PMC10178017
DOI
10.3390/ijms24097790
PII: ijms24097790
Knihovny.cz E-zdroje
- Klíčová slova
- Nicotiana tabacum, plant transformation, regulation of plant morphogenesis, transcription factors, transcriptome profiling, viroid pathogenesis,
- MeSH
- Citrus * metabolismus MeSH
- Humulus * genetika MeSH
- kůra rostlin metabolismus MeSH
- malá nekódující RNA * MeSH
- nemoci rostlin genetika MeSH
- tabák genetika metabolismus MeSH
- transkripční faktor TFIIIA genetika metabolismus MeSH
- viroidy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá nekódující RNA * MeSH
- transkripční faktor TFIIIA MeSH
Viroids are small, non-coding, pathogenic RNAs with the ability to disturb plant developmental processes. This dysregulation redirects the morphogenesis of plant organs, significantly impairing their functionality. Citrus bark cracking viroid (CBCVd) causes detrimental developmental distortions in infected hops (Humulus lupulus) and causes significant economic losses. CBCVd can infect cells and tissues of the model plant tobacco (Nicotiana tabacum), provided it is delivered via transgenesis. The levels of CBCVd in tobacco were enhanced in plant hybrids expressing CBCVd cDNAs and either the tobacco or hop variant of TFIIIA-7ZF, a viroid-mediated splicing derivative of transcription factor IIIA, which is important for viroid replication by DNA-dependent RNA polymerase II. The TFIIIA-7ZF variants can change the tobacco morphogenesis if expressed in leaves and shoots. In addition to the splitting of shoots, the "pathomorphogenic" network in hybrid plants expressing CBCVd and HlTFIIIA-7ZF induced leaf fusions and malformations. Moreover, CBCVd can dramatically change another morphogenesis into teratomic and petal-like tissues if propagated above some limit in young transgenic tobacco microspores and anthers. By comparative RNA profiling of transgenic tobacco shoots bearing TFIIIA-7ZFs and CBCVd-transformed/infected anthers, we found a differential expression of many genes at p < 0.05. As the main common factor showing the differential up-regulation in shoot and anther tissues, a LITTLE ZIPPER 2-like transcription factor was found. We propose that this factor, which can interact as a competitive inhibitor of the also dysregulated homeobox-leucin zipper family protein (HD-ZIPIII) in apical meristem, is essential for a network responsible for some morphological changes and modifications of plant degradome within shoot meristem regulation and secondary xylem differentiation.
Zobrazit více v PubMed
Sano T. Progress in 50 years of viroid research—Molecular structure, pathogenicity, and host adaptation. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2021;97:371–401. doi: 10.2183/pjab.97.020. PubMed DOI PMC
Hadidi A., Vidalakis G., Sano T. Economic significance of fruit tree and grapevine viroids. In: Hadidi A., Randles J., Flores R., Palukaitis P., editors. Viroids and Satellites. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2017. pp. 15–21.
Navarro B., Flores R., Di Serio F. Advances in viroid-host interactions. Annu. Rev. Virol. 2021;8:305–325. doi: 10.1146/annurev-virology-091919-092331. PubMed DOI
Diener T., editor. The Viroids. Plenum Press; New York, NY, USA: 1987.
Diener T. Viroids and the nature of viroid diseases. Arch. Virol. Suppl. 1999;15:203–220. doi: 10.1007/978-3-7091-6425-9_15. PubMed DOI
Hadidi A., Flores R., Randles J., Semancik J., editors. Viroids. CSIRO Publishing; Clayton, Australia: 2003.
Jakše J., Radišek S., Pokorn T., Matoušek J., Javornik B. Deep-sequencing revealed Citrus bark cracking viroid (CBCVd) as a highly aggressive pathogen on hop. Plant Pathol. 2015;64:831–842. doi: 10.1111/ppa.12325. DOI
Mishra A., Duraisamy G., Matoušek J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genom. 2016;17:919. doi: 10.1186/s12864-016-3271-4. PubMed DOI PMC
Matoušek J., Siglová K., Jakše J., Radišek S., Brass J., Tsushima T., Guček T., Duraisamy G., Sano T., Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.) J. Plant Physiol. 2017;213:166–177. doi: 10.1016/j.jplph.2017.02.014. PubMed DOI
Štajner N., Radišek S., Mishra A., Nath V., Matoušek J., Jakše J. Evaluation of disease severity and global transcriptome response induced by citrus bark cracking viroid, hop latent viroid, and their co-infection in hop (Humulus lupulus L.) Int. J. Mol. Sci. 2019;20:3154. doi: 10.3390/ijms20133154. PubMed DOI PMC
Nath V., Mishra A., Kumar A., Matoušek J., Jakše J. Revisiting the role of transcription factors in coordinating the defense response against citrus bark cracking viroid infection in commercial hop (Humulus Lupulus L.) Viruses. 2019;11:419. doi: 10.3390/v11050419. PubMed DOI PMC
Nath V., Mishra A., Awasthi P., Shrestha A., Matoušek J., Jakse J., Kocábek T., Khan A. Identification and characterization of long non-coding RNA and their response against citrus bark cracking viroid infection in Humulus lupulus. Genomics. 2021;113:2350–2364. doi: 10.1016/j.ygeno.2021.05.029. PubMed DOI
Matoušek J., Steinbachová L., Drábková L., Kocábek T., Potěšil D., Mishra A., Honys D., Steger G. Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase in the degradation processes. Int. J. Mol. Sci. 2020;21:3029. doi: 10.3390/ijms21083029. PubMed DOI PMC
Matoušek J., Steger G. The splicing variant TFIIIA-7ZF of viroid-modulated transcription factor IIIA causes physiological irregularities in transgenic tobacco and transient somatic depression of “degradome” characteristic for developing pollen. Cells. 2022;11:784. doi: 10.3390/cells11050784. PubMed DOI PMC
Wang Y., Qu J., Ji S., Wallace A., Wu J., Li Y., Gopalan V., Ding B. A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II. Plant Cell. 2016;28:1094–1107. doi: 10.1105/tpc.16.00100. PubMed DOI PMC
Dissanayaka Mudiyanselage S., Ma J., Pechan T., Pechanova O., Liu B., Wang Y. A remodeled RNA polymerase II complex catalyzing viroid RNA-templated transcription. PLoS Pathog. 2022;18:e1010850. doi: 10.1371/journal.ppat.1010850. PubMed DOI PMC
Steinbachová L., Matoušek J., Steger G., Matoušková H., Radišek S., Honys D. Transformation of seed non-transmissible hop viroids in Nicotiana benthamiana causes distortions in male gametophyte development. Plants. 2021;10:2398. doi: 10.3390/plants10112398. PubMed DOI PMC
Patzak J., Henychová A., Matoušek J. Developmental regulation of lupulin gland-associated genes in aromatic and bitter hops (Humulus lupulus L.) BMC Plant Biol. 2021;21:534. doi: 10.1186/s12870-021-03292-z. PubMed DOI PMC
Jakše J., Wang Y., Matoušek J. Transcriptomic analyses provide insights into plant-viroid interactions. In: Adkar-Purushothama C., Sano T., Perreault J.P., Sreenivasa M., DiSerio F., Daròs J.A., editors. Fundamentals of Viroid Biology. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherlands: 2023.
Navarro B., Gisel A., Rodio M., Delgado S., Flores R., Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003. doi: 10.1111/j.1365-313X.2012.04940.x. PubMed DOI
Eiras M., Nohales M., Kitajima E., Flores R., Daròs J. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 2010;156:529–533. doi: 10.1007/s00705-010-0867-x. PubMed DOI
Dadami E., Boutla A., Vrettos N., Tzortzakaki S., Karakasilioti I., Kalantidis K. DICER-LIKE 4 but not DICER-LIKE 2 may have a positive effect on potato spindle tuber viroid accumulation in Nicotiana benthamiana. Mol. Plant. 2012;6:232–234. doi: 10.1093/mp/sss118. PubMed DOI
Minoia S., Carbonell A., Di Serio F., Gisel A., Carrington J., Navarro B., Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J. Virol. 2014;88:11933–11945. doi: 10.1128/JVI.01404-14. PubMed DOI PMC
Cavallini-Speisser Q., Morel P., Monniaux M. Petal Cellular Identities. Front. Plant Sci. 2021;12:2430. doi: 10.3389/fpls.2021.745507. PubMed DOI PMC
Martin C., Bhatt K., Baumann K., Jin H., Zachgo S., Roberts K., Schwarz-Sommer Z., Glover B., Perez-Rodrigues M. The mechanics of cell fate determination in petals. Philos. Trans. R Soc. Lond. B Biol. Sci. 2002;357:809–813. doi: 10.1098/rstb.2002.1089. PubMed DOI PMC
Perez-Rodriguez M., Jaffe F.W., Butelli E., Glover B.J., Martin C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development. 2005;132:359–370. doi: 10.1242/dev.01584. PubMed DOI
Galego L., Almeida J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 2002;16:880–891. doi: 10.1101/gad.221002. PubMed DOI PMC
Thomson B., Wellmer F. Molecular regulation of flower development. Curr. Top. Dev. Biol. 2019;131:185–210. doi: 10.1016/bs.ctdb.2018.11.007. PubMed DOI
Ali S., Khan N., Xie L. Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. Int. J. Mol. Sci. 2020;21:5132. doi: 10.3390/ijms21145132. PubMed DOI PMC
Guan C., Jiao Y. Interplay between the shoot apical meristem and lateral organs. Abiotech. 2020;1:178–184. doi: 10.1007/s42994-020-00021-2. PubMed DOI PMC
Moulia B., Badel E., Bastien R., Duchemin L., Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: An example of morphogenetic plasticity beyond the shoot apical meristem. New Phytol. 2022;233:2354–2379. doi: 10.1111/nph.17913. PubMed DOI
Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev. Biol. 2009;336:1–9. doi: 10.1016/j.ydbio.2009.09.031. PubMed DOI
Xu Q., Li R., Weng L., Sun Y., Li M., Xiao H. Domain-specific expression of meristematic genes is defined by the LITTLE ZIPPER protein DTM in tomato. Commun. Biol. 2019;2:134. doi: 10.1038/s42003-019-0368-8. PubMed DOI PMC
Wenkel S., Emery J., Hou B., Evans M., Barton M. A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell. 2007;19:3379–3390. doi: 10.1105/tpc.107.055772. PubMed DOI PMC
Yin X., Meicenheimer R. Anisotomous dichotomy results from an unequal bifurcation of the original shoot apical meristem in Diphasiastrum digitatum (Lycopodiaceae) Am. J. Bot. 2017;104:782–786. doi: 10.3732/ajb.1700021. PubMed DOI
Ferrario S., Shchennikova A., Franken J., Immink R., Angenent G. Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 2006;140:890–898. doi: 10.1104/pp.105.072660. PubMed DOI PMC
Danilevskaya O., Meng X., Selinger D., Deschamps S., Hermon P., Vansant G., Gupta R., Ananiev E., Muszynski M. Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol. 2008;147:2054–2069. doi: 10.1104/pp.107.115261. PubMed DOI PMC
Pérez-Ruiz R., García-Ponce B., Marsch-Martínez N., Ugartechea-Chirino Y., Villajuana-Bonequi M., de Folter S., Azpeitia E., Dávila-Velderrain J., Cruz-Sánchez D., Garay-Arroyo A., et al. XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions. Mol. Plant. 2015;8:796–813. doi: 10.1016/j.molp.2015.01.017. PubMed DOI
Li Y., Feng J., Cheng L., Dai C., Gao Q., Liu Z., Kang C. Gene expression profiling of the shoot meristematic tissues in woodland strawberry Fragaria vesca. Front. Plant Sci. 2019;10:1624. doi: 10.3389/fpls.2019.01624. PubMed DOI PMC
Byrne M., Groover A., Fontana J., Martienssen R. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development. 2003;130:3941–3950. doi: 10.1242/dev.00620. PubMed DOI
Smith H., Hake S. The interaction of two homeobox genes, Brevipedicellus and Pennywise, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell. 2003;15:1717–1727. doi: 10.1105/tpc.012856. PubMed DOI PMC
Bhatt A., Etchells J., Canales C., Lagodienko A., Dickinson H. VAAMANA—A BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene. 2004;328:103–111. doi: 10.1016/j.gene.2003.12.033. PubMed DOI
Zhu H., Hu F., Wang R., Zhou X., Sze S., Liou L., Barefoot A., Dickman M., Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell. 2011;145:242–256. doi: 10.1016/j.cell.2011.03.024. PubMed DOI PMC
Kano-Murakami Y., Yanai T., Tagiri A., Matsuoka M. A rice homeotic gene, OSH1, causes unusual phenotypes in transgenic tobacco. FEBS Lett. 1993;334:365–368. doi: 10.1016/0014-5793(93)80713-5. PubMed DOI
Gou X., He K., Yang H., Yuan T., Lin H., Clouse S., Li J. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genom. 2010;11:19. doi: 10.1186/1471-2164-11-19. PubMed DOI PMC
Liu Y., Huang X., Li M., He P., Zhang Y. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytol. 2016;212:637–645. doi: 10.1111/nph.14072. PubMed DOI
Gao M., Wang X., Wang D., Xu F., Ding X., Zhang Z., Bi D., Cheng Y., Chen S., Li X., et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell. Host Microbe. 2009;6:34–44. doi: 10.1016/j.chom.2009.05.019. PubMed DOI
Ito J., Fukuda H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell. 2002;14:3201–3211. doi: 10.1105/tpc.006411. PubMed DOI PMC
Pérez-Amador M., Abler M., De Rocher E., Thompson D., van Hoof A., LeBrasseur N., Lers A., Green P. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol. 2000;122:169–180. doi: 10.1104/pp.122.1.169. PubMed DOI PMC
Farage-Barhom S., Burd S., Sonego L., Mett A., Belausov E., Gidoni D., Lers A. Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: From the ER to fragmented nuclei. Mol. Plant. 2011;4:1062–1073. doi: 10.1093/mp/ssr045. PubMed DOI
Zong Y., Hao Z., Tu Z., Shen Y., Zhang C., Wen S., Yang L., Ma J., Li H. Genome-wide survey and identification of AP2/ERF genes involved in shoot and leaf development in Liriodendron chinense. BMC Genom. 2021;22:807. doi: 10.1186/s12864-021-08119-7. PubMed DOI PMC
Shoji T., Yuan L. ERF Gene Clusters: Working Together to Regulate Metabolism. Trends Plant Sci. 2021;26:23–32. doi: 10.1016/j.tplants.2020.07.015. PubMed DOI
Phukan U., Jeena G., Tripathi V., Shukla R. Regulation of Apetala2/Ethylene Response Factors in Plants. Front. Plant Sci. 2017;8:150. doi: 10.3389/fpls.2017.00150. PubMed DOI PMC
Mirzaei K., Bahramnejad B., Fatemi S. Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum) Plant Gene. 2020;24:100257. doi: 10.1016/j.plgene.2020.100257. DOI
Herath V., Verchot J. Insight into the bZIP gene family in Solanum tuberosum: Genome and transcriptome analysis to understand the roles of gene diversification in spatiotemporal gene expression and function. Int. J. Mol. Sci. 2020;22:253. doi: 10.3390/ijms22010253. PubMed DOI PMC
Irish V. The flowering of Arabidopsis flower development. Plant J. 2010;61:1014–1028. doi: 10.1111/j.1365-313X.2009.04065.x. PubMed DOI
Valdés A., Overnäs E., Johansson H., Rada-Iglesias A., Engström P. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol. Biol. 2012;80:405–418. doi: 10.1007/s11103-012-9956-4. PubMed DOI
Chang X., Donnelly L., Sun D., Rao J., Reid M., Jiang C. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS ONE. 2014;9:e88320. doi: 10.1371/journal.pone.0088320. PubMed DOI PMC
Zhang L., Sun L., Zhang X., Zhang S., Xie D., Liang C., Huang W., Fan L., Fang Y., Chang Y. OFP1 Interaction with ATH1 Regulates Stem Growth, Flowering Time and Flower Basal Boundary Formation in Arabidopsis. Genes. 2018;9:399. doi: 10.3390/genes9080399. PubMed DOI PMC
Tupý J., Süss J., Hrabětová E., Říhova L. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant. 1983;25:231. doi: 10.1007/BF02902110. DOI
Horsch R., Fry J., Hoffman N., Eichholtz D., Rogers S., Fraley R. A simple and general method for transferring genes into plants. Science. 1985;227:1229–1231. doi: 10.1126/science.227.4691.1229. PubMed DOI
Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Matoušek J., Kozlová P., Orctová L., Schmitz A., Pešina K., Bannach O., Diermann D., Steger G., Riesner D. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biol. Chem. 2007;388:1–13. doi: 10.1515/BC.2007.001. PubMed DOI
Puchta H., Ramm K., Sänger H. The molecular structure of hop latent viroid (HLV), a new viroid occurring worldwide in hops. Nucleic Acids Res. 1988;16:4197–4216. doi: 10.1093/nar/16.10.4197. PubMed DOI PMC
Kim D., Paggi J., Park C., Bennett C., Salzberg S. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Langmead B., Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Pertea M., Kim D., Pertea G., Leek J., Salzberg S. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11:1650–1667. doi: 10.1038/nprot.2016.095. PubMed DOI PMC
Love M., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Frazee A.C., Pertea G., Jaffe A.E., Langmead B., Salzberg S.L., Leek J.T. Flexible analysis of transcriptome assemblies with Ballgown. Biorxiv. 2014;1:003665. doi: 10.1101/003665. DOI
Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Edwards K.D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A.D., Bombarely A., Allen F., Hurst R., White B., Kernodle S.P., et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom. 2017;18 doi: 10.1186/s12864-017-3791-6. PubMed DOI PMC
Matoušek J., Junker V., Vrba L., Schubert J., Patzak J., Steger G. Molecular characterization and genome organization of 7 SL RNA genes from hop (Humulus lupulus L.) Gene. 1999;239:173–183. doi: 10.1016/S0378-1119(99)00352-2. PubMed DOI