Second-generation piperazine derivatives as promising radiation countermeasures
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39149108
PubMed Central
PMC11324046
DOI
10.1039/d4md00311j
PII: d4md00311j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The increasing threat of nuclear incidents and the widespread use of ionizing radiation (IR) in medical treatments underscore the urgent need for effective radiation countermeasures. Despite the availability of compounds such as amifostine, their clinical utility is significantly limited by adverse side effects and logistical challenges in administration. This study focuses on the synthesis and evaluation of novel piperazine derivatives as potential radioprotective agents, with the aim of overcoming the limitations associated with current countermeasures. We designed, synthesized, and evaluated a series of 1-(2-hydroxyethyl)piperazine derivatives. The compounds were assessed for cytotoxicity across a panel of human cell lines, and for their radioprotective effects in the MOLT-4 lymphoblastic leukemia cell line and in peripheral blood mononuclear cells (PBMCs) exposed to gamma radiation. The radioprotective efficacy was further quantified using the dicentric chromosome assay (DCA) to measure DNA damage mitigation. Among the synthesized derivatives, compound 6 demonstrated the most significant radioprotective effects in vitro, with minimal cytotoxicity across the tested cell lines. Compound 3 also showed notable efficacy, particularly in reducing dicentric chromosomes, thus indicating its potential to mitigate DNA damage from IR. Both compounds exhibited superior safety profiles and effectiveness compared to amifostine, suggesting their potential as more viable radioprotective agents. This study highlights the development of novel piperazine derivatives with promising radioprotective properties. Compound 6 emerged as the leading candidate, offering an optimal balance between efficacy and safety, with compound 3 also displaying significant potential. These findings support the further development and clinical evaluation of these compounds as safer, and more effective radiation countermeasures.
Zobrazit více v PubMed
Abbasi K. Ali P. Barbour V. Bibbins-Domingo K. Rikkert M. G. M. O. Haines A. Helfand I. Horton R. Mash B. Mitra A. Monteiro C. Naumova E. N. Rubin E. J. Ruff T. Sahni P. Tumwine J. Yonga P. Zielinski C. Reducing the Risks of Nuclear War—the Role of Health Professionals. ESC Heart Fail. 2023;10(5):2757–2759. doi: 10.1002/ehf2.14502. doi: 10.1002/ehf2.14502. DOI
Ruff T. A. Ending Nuclear Weapons before They End Us: Current Challenges and Paths to Avoiding a Public Health Catastrophe. J. Public Health Policy. 2022;43(1):5–17. doi: 10.1057/s41271-021-00331-9. doi: 10.1057/s41271-021-00331-9. PubMed DOI PMC
Vilhelmsson A. Baum S. D. Public Health and Nuclear Winter: Addressing a Catastrophic Threat. J. Public Health Policy. 2023;44(3):360–369. doi: 10.1057/s41271-023-00416-7. doi: 10.1057/s41271-023-00416-7. PubMed DOI PMC
Abshire D. Lang M. K. The Evolution of Radiation Therapy in Treating Cancer. Semin. Oncol. Nurs. 2018;34(2):151–157. doi: 10.1016/j.soncn.2018.03.006. doi: 10.1016/j.soncn.2018.03.006. PubMed DOI
Delaney G. Jacob S. Featherstone C. Barton M. The Role of Radiotherapy in Cancer Treatment: Estimating Optimal Utilization from a Review of Evidence-Based Clinical Guidelines. Cancer. 2005;104(6):1129–1137. doi: 10.1002/cncr.21324. doi: 10.1002/cncr.21324. PubMed DOI
Lin E. C. Radiation Risk from Medical Imaging. Mayo Clin Proc. 2010;85(12):1142–1146. doi: 10.4065/mcp.2010.0260. doi: 10.4065/mcp.2010.0260. PubMed DOI PMC
Mavragani I. V. Nikitaki Z. Kalospyros S. A. Georgakilas A. G. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers. 2019;11(11):1789. doi: 10.3390/cancers11111789. doi: 10.3390/cancers11111789. PubMed DOI PMC
Mu H. Sun J. Li L. Yin J. Hu N. Zhao W. Ding D. Yi L. Ionizing Radiation Exposure: Hazards, Prevention, and Biomarker Screening. Environ. Sci. Pollut. Res. 2018;25(16):15294–15306. doi: 10.1007/s11356-018-2097-9. doi: 10.1007/s11356-018-2097-9. PubMed DOI
Wang K. Tepper J. E. Radiation Therapy-Associated Toxicity: Etiology, Management, and Prevention. Ca-Cancer J. Clin. 2021;71(5):437–454. doi: 10.3322/caac.21689. doi: 10.3322/caac.21689. PubMed DOI
Venkata Narayanan I. Paulsen M. T. Bedi K. Berg N. Ljungman E. A. Francia S. Veloso A. Magnuson B. di Fagagna F. d. Wilson T. E. Ljungman M. Transcriptional and Post-Transcriptional Regulation of the Ionizing Radiation Response by ATM and P53. Sci. Rep. 2017;7:43598. doi: 10.1038/srep43598. doi: 10.1038/srep43598. PubMed DOI PMC
Tichy A. Marek J. Havelek R. Pejchal J. Seifrtova M. Zarybnicka L. Filipova A. Rezacova M. Sinkorova Z. New Light on An Old Friend: Targeting PUMA in Radioprotection and Therapy of Cardiovascular and Neurodegenerative Diseases. Curr. Drug Targets. 2018;19(16):1943–1957. doi: 10.2174/1389450119666180406110743. doi: 10.2174/1389450119666180406110743. PubMed DOI
Chmil V. Filipová A. Tichý A. Looking for the Phoenix: The Current Research on Radiation Countermeasures. Int. J. Radiat. Biol. 2023;99(8):1148–1166. doi: 10.1080/09553002.2023.2173822. doi: 10.1080/09553002.2023.2173822. PubMed DOI
Singh V. K. Seed T. M. The Efficacy and Safety of Amifostine for the Acute Radiation Syndrome. Expert Opin. Drug Saf. 2019;18(11):1077–1090. doi: 10.1080/14740338.2019.1666104. doi: 10.1080/14740338.2019.1666104. PubMed DOI
Ji L. Cui P. Zhou S. Qiu L. Huang H. Wang C. Wang J. Advances of Amifostine in Radiation Protection: Administration and Delivery. Mol. Pharmaceutics. 2023;20(11):5383–5395. doi: 10.1021/acs.molpharmaceut.3c00600. doi: 10.1021/acs.molpharmaceut.3c00600. PubMed DOI
Praetorius N. P. and Mandal T. K., Alternate delivery route for amifostine as a radio−/chemo-protecting agent†|Journal of Pharmacy and Pharmacology|Oxford Academic, https://academic.oup.com/jpp/article/60/7/809/6148005?login=true(accessed 2024-04-15) PubMed
Singh V. K. Fatanmi O. O. Wise S. Y. Newman V. L. Romaine P. L. P. Seed T. M. The Potentiation Of The Radioprotective Efficacy Of Two Medical Countermeasures, Gamma-Tocotrienol And Amifostine, By A Combination Prophylactic Modality. Radiat. Prot. Dosim. 2016;172(1–3):302–310. doi: 10.1093/rpd/ncw223. doi: 10.1093/rpd/ncw223. PubMed DOI PMC
Mustata G. Li M. Zevola N. Bakan A. Zhang L. Epperly M. Greenberger J. S. Yu J. Bahar I. Development of Small-Molecule PUMA Inhibitors for Mitigating Radiation-Induced Cell Death. Curr. Top. Med. Chem. 2011;11(3):281–290. doi: 10.2174/156802611794072641. doi: 10.2174/156802611794072641. PubMed DOI PMC
Marek J. Tichy A. Havelek R. Seifrtova M. Filipova A. Andrejsova L. Kucera T. Prchal L. Muckova L. Rezacova M. Sinkorova Z. Pejchal J. A Novel Class of Small Molecule Inhibitors with Radioprotective Properties. Eur. J. Med. Chem. 2020;187:111606. doi: 10.1016/j.ejmech.2019.111606. doi: 10.1016/j.ejmech.2019.111606. PubMed DOI
Filipova A. Marek J. Havelek R. Pejchal J. Jelicova M. Cizkova J. Majorosova M. Muckova L. Kucera T. Prchal L. Psotka M. Zivna N. Koutova D. Sinkorova Z. Rezacova M. Tichy A. Substituted Piperazines as Novel Potential Radioprotective Agents. Molecules. 2020;25(3):E532. doi: 10.3390/molecules25030532. doi: 10.3390/molecules25030532. PubMed DOI PMC
Feng T. Liu J. Zhou N. Wang L. Liu X. Zhang S. Wang S. Chen H. CLZ-8, a Potent Small-Molecular Compound, Protects Radiation-Induced Damages Both in Vitro and in Vivo. Environ. Toxicol. Pharmacol. 2018;61:44–51. doi: 10.1016/j.etap.2018.05.004. doi: 10.1016/j.etap.2018.05.004. PubMed DOI
Bhat K. Duhachek-Muggy S. Ramanathan R. Saki M. Alli C. Medina P. Damoiseaux R. Whitelegge J. McBride W. H. Schaue D. Vlashi E. Pajonk F. 1-[(4-Nitrophenyl)Sulfonyl]-4-Phenylpiperazine Increases the Number of Peyer's Patch-Associated Regenerating Crypts in the Small Intestines after Radiation Injury. Radiother. Oncol. 2019;132:8–15. doi: 10.1016/j.radonc.2018.11.011. doi: 10.1016/j.radonc.2018.11.011. PubMed DOI PMC
Farzipour S. Amiri F. T. Mihandoust E. Shaki F. Noaparast Z. Ghasemi A. Hosseinimehr S. J. Radioprotective Effect of Diethylcarbamazine on Radiation-Induced Acute Lung Injury and Oxidative Stress in Mice. J. Bioenerg. Biomembr. 2020;52(1):39–46. doi: 10.1007/s10863-019-09820-9. doi: 10.1007/s10863-019-09820-9. PubMed DOI
Priimagi A. Cavallo G. Metrangolo P. Resnati G. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. Acc. Chem. Res. 2013;46(11):2686–2695. doi: 10.1021/ar400103r. doi: 10.1021/ar400103r. PubMed DOI PMC
Naylor M. R. Ly A. M. Handford M. J. Ramos D. P. Pye C. R. Furukawa A. Klein V. G. Noland R. P. Edmondson Q. Turmon A. C. Hewitt W. M. Schwochert J. Townsend C. E. Kelly C. N. Blanco M.-J. Lokey R. S. Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility. J. Med. Chem. 2018;61(24):11169–11182. doi: 10.1021/acs.jmedchem.8b01259. doi: 10.1021/acs.jmedchem.8b01259. PubMed DOI
Mechanisms of Catalysis of Nucleophilic Reactions of Carboxylic Acid Derivatives|Chemical Reviews, https://pubs.acs.org/doi/10.1021/cr60203a005(accessed 2024-03-27)
Singh G. S. Mollet K. D'hooghe M. De Kimpe N. Epihalohydrins in Organic Synthesis. Chem. Rev. 2013;113(3):1441–1498. doi: 10.1021/cr3003455. doi: 10.1021/cr3003455. PubMed DOI
Tafreshi N. K. Kil H. Pandya D. N. Tichacek C. J. Doligalski M. L. Budzevich M. M. Delva N. C. Langsen M. L. Vallas J. A. Boulware D. C. Engelman R. W. Gage K. L. Moros E. G. Wadas T. J. McLaughlin M. L. Morse D. L. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol. Transl. Sci. 2021;4(2):953–965. doi: 10.1021/acsptsci.1c00035. doi: 10.1021/acsptsci.1c00035. PubMed DOI PMC
Lobo S. Is There Enough Focus on Lipophilicity in Drug Discovery? Expert Opin. Drug Discovery. 2020;15(3):261–263. doi: 10.1080/17460441.2020.1691995. doi: 10.1080/17460441.2020.1691995. PubMed DOI
Kreighbaum W. E. Matier W. L. Dennis R. D. Minielli J. L. Deitchman D. Perhach J. L. Comer W. T. Antihypertensive Indole Derivatives of Phenoxypropanolamines with Beta-Adrenergic Receptor Antagonist and Vasodilating Activity. J. Med. Chem. 1980;23(3):285–289. doi: 10.1021/jm00177a015. doi: 10.1021/jm00177a015. PubMed DOI
Pirayesh Islamian J. Farajollahi A. Mehrali H. Hatamian M. Radioprotective Effects of Amifostine and Lycopene on Human Peripheral Blood Lymphocytes In Vitro. J. Med. Imaging Radiat. Sci. 2016;47(1):49–54. doi: 10.1016/j.jmir.2015.10.006. doi: 10.1016/j.jmir.2015.10.006. PubMed DOI
Dorr R. T. Holmes B. C. Dosing Considerations with Amifostine: A Review of the Literature and Clinical Experience. Semin. Oncol. 1999;26(2 Suppl 7):108–119. PubMed