Substituted Piperazines as Novel Potential Radioprotective Agents

. 2020 Jan 25 ; 25 (3) : . [epub] 20200125

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31991816

Grantová podpora
17-13541S Grantová Agentura České Republiky

The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.

Zobrazit více v PubMed

Yamamoto T., Kinoshita M. Radioprotective Effect of Vitamin C as an Antioxidant. In: Hamza A.H., editor. Vitamin C. InTech; London, UK: 2017.

Smith T.A., Kirkpatrick D.R., Smith S., Smith T.K., Pearson T., Kailasam A., Herrmann K.Z., Schubert J., Agrawal D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Trans. Med. 2017;15:232. doi: 10.1186/s12967-017-1338-x. PubMed DOI PMC

Jagetia G.C. Recent Advances in Indian Herbal Drug Research Guest Editor: Thomas Paul Asir Devasagayam Radioprotective Potential of Plants and Herbs against the Effects of Ionizing Radiation. J. Clin. Biochem. Nutr. 2007;40:74–81. doi: 10.3164/jcbn.40.74. PubMed DOI PMC

Musa A.E., Omyan G., Esmaely F., Shabeeb D. Radioprotective Effect of Hesperidin: A Systematic Review. Medicina. 2019;55:370. doi: 10.3390/medicina55070370. PubMed DOI PMC

Goodhead D.T. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 1994;65:7–17. doi: 10.1080/09553009414550021. PubMed DOI

Favaloro B., Allocati N., Graziano V., Di Ilio C., De Laurenzi V. Role of apoptosis in disease. Aging (Albany NY) 2012;4:330–349. doi: 10.18632/aging.100459. PubMed DOI PMC

Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014;15:49–63. doi: 10.1038/nrm3722. PubMed DOI

Bures J., Jirkovska A., Sestak V., Jansova H., Karabanovich G., Roh J., Sterba M., Simunek T., Kovarikova P. Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase IIbeta but not its iron chelating metabolite. Toxicology. 2017;392:1–10. doi: 10.1016/j.tox.2017.09.012. PubMed DOI

Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Trans. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC

Mustata G., Li M., Zevola N., Bakan A., Zhang L., Epperly M., Greenberger J.S., Yu J., Bahar I. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr. Top. Med. Chem. 2011;11:281–290. doi: 10.2174/156802611794072641. PubMed DOI PMC

Qi X., Davis B., Chiang Y.-H., Filichia E., Barnett A., Greig N.H., Hoffer B., Luo Y. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson’s disease model. J. Neurochem. 2016;138:746–757. doi: 10.1111/jnc.13706. PubMed DOI PMC

Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K. Radioprotection by plant products: Present status and future prospects. Phytother. Res. 2005;19:1–22. doi: 10.1002/ptr.1605. PubMed DOI

Nair G.G., Nair C.K.K. Radioprotective Effects of Gallic Acid in Mice. BioMed Res. Int. 2013;2013:1–13. doi: 10.1155/2013/953079. PubMed DOI PMC

Marek J., Tichy A., Havelek R., Seifrtova M., Filipova A., Andrejsova L., Kučera T., Prchal L., Muckova L., Rezacova M., et al. A Novel Class of Small Molecular Inhibitors with Radioprotective Properties. Eur. J. Med. Chem. 2020 doi: 10.1016/j.ejmech.2019.111606. in press. PubMed DOI

Korabecny J., Dolezal R., Cabelova P., Horova A., Hruba E., Ricny J., Sedlacek L., Nepovimova E., Spilovska K., Andrs M., et al. 7-MEOTA–donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2014;82:426–438. doi: 10.1016/j.ejmech.2014.05.066. PubMed DOI

PubChem (2R)-1-(4-Chloro-3-methylphenoxy)-3-[4-(2-hydroxyethyl)piperazin-1-yl]propan-2-ol. [(accessed on 12 November 2019)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1539752.

Dains F.B., Brewster R.Q., Blair J.S., Thompson W.C. THE SUBSTITUTED THIO-UREAS. III. THE SYNTHESIS OF THIAZOLIDINE AND THIAZANE DERIVATIVES. J. Am. Chem. Soc. 1922;44:2637–2643. doi: 10.1021/ja01432a035. DOI

Hutchinson T.H., Bögi C., Winter M.J., Owens J.W. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology. Aquatic Toxic. 2009;91:197–202. doi: 10.1016/j.aquatox.2008.11.009. PubMed DOI

Thoolen B., Maronpot R.R., Harada T., Nyska A., Rousseaux C., Nolte T., Malarkey D.E., Kaufmann W., Küttler K., Deschl U., et al. Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System. Toxicol. Pathol. 2010;38:5S–81S. doi: 10.1177/0192623310386499. PubMed DOI

Ghosh S.P., Perkins M.W., Hieber K., Kulkarni S., Kao T.-C., Reddy E.P., Reddy M.V.R., Maniar M., Seed T., Kumar K.S. Radiation protection by a new chemical entity, Ex-Rad: Efficacy and mechanisms. Radiat. Res. 2009;171:173–179. doi: 10.1667/RR1367.1. PubMed DOI

Ghosh S.P., Kulkarni S., Perkins M.W., Hieber K., Pessu R.L., Gambles K., Maniar M., Kao T.-C., Seed T.M., Kumar K.S. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radia. Res. 2012;53:526–536. doi: 10.1093/jrr/rrs001. PubMed DOI PMC

Tang J.Y., Mackay-Wiggan J.M., Aszterbaum M., Yauch R.L., Lindgren J., Chang K., Coppola C., Chanana A.M., Marji J., Bickers D.R., et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N. Engl. J. Med. 2012;366:2180–2188. doi: 10.1056/NEJMoa1113538. PubMed DOI PMC

Hosseinimehr S.J., Shafiee A., Mozdarani H., Akhlagpour S., Froughizadeh M. Radioprotective effects of 2-imino-3-[(chromone-2-yl)carbonyl] thiazolidines against gamma-irradiation in mice. J. Radiat. Res. 2002;43:293–300. doi: 10.1269/jrr.43.293. PubMed DOI

Mun G.-I., Kim S., Choi E., Kim C.S., Lee Y.-S. Pharmacology of natural radioprotectors. Arch. Pharma. Res. 2018;41:1033–1050. doi: 10.1007/s12272-018-1083-6. PubMed DOI PMC

Srinivasan V., Pendergrass J.A., Kumar K.S., Landauer M.R., Seed T.M. Radioprotection, pharmacokinetic and behavioural studies in mouse implanted with biodegradable drug (amifostine) pellets. Int. J. Radiat. Biol. 2002;78:535–543. doi: 10.1080/095530002317577358. PubMed DOI

Cassatt D.R., Fazenbaker C.A., Kifle G., Bachy C.M. Effects of dose and schedule on the efficacy of ethyol: Preclinical studies. Semin. Oncol. 2003;30:31–39. doi: 10.1053/j.seminoncol.2003.11.039. PubMed DOI

Ashkenazi A., Fairbrother W.J., Leverson J.D., Souers A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017;16:273–284. doi: 10.1038/nrd.2016.253. PubMed DOI

Tichy A., Marek J., Havelek R., Pejchal J., Seifrtova M., Zarybnicka L., Filipova A., Rezacova M., Sinkorova Z. New Light on An Old Friend: Targeting PUMA in Radioprotection and Therapy of Cardiovascular and Neurodegenerative Diseases. Curr. Drug Targets. 2018;19:1943–1957. doi: 10.2174/1389450119666180406110743. PubMed DOI

Souers A.J., Leverson J.D., Boghaert E.R., Ackler S.L., Catron N.D., Chen J., Dayton B.D., Ding H., Enschede S.H., Fairbrother W.J., et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013;19:202–208. doi: 10.1038/nm.3048. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Muckova L., Pejchal J., Jost P., Vanova N., Herman D., Jun D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem. Toxicol. 2019;42:252–256. doi: 10.1080/01480545.2018.1432641. PubMed DOI

Misik J., Nepovimova E., Pejchal J., Kassa J., Korabecny J., Soukup O. Cholinesterase Inhibitor 6-Chlorotacrine - In vivo Toxicological Profile and Behavioural Effects. Curr. Alzheimer Res. 2018;15:552–560. doi: 10.2174/1567205015666171212105412. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Second-generation piperazine derivatives as promising radiation countermeasures

. 2024 Aug 14 ; 15 (8) : 2855-2866. [epub] 20240711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...