Substituted Piperazines as Novel Potential Radioprotective Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-13541S
Grantová Agentura České Republiky
PubMed
31991816
PubMed Central
PMC7038073
DOI
10.3390/molecules25030532
PII: molecules25030532
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, maximum tolerated dose, piperazine, radiation-protective agents, synthesis de novo,
- MeSH
- analýza přežití MeSH
- ionizující záření MeSH
- lidé MeSH
- maximální tolerovaná dávka MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- piperaziny aplikace a dávkování škodlivé účinky chemie farmakologie MeSH
- radioprotektivní látky aplikace a dávkování škodlivé účinky chemie farmakologie MeSH
- viabilita buněk účinky léků účinky záření MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- piperaziny MeSH
- radioprotektivní látky MeSH
The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.
Zobrazit více v PubMed
Yamamoto T., Kinoshita M. Radioprotective Effect of Vitamin C as an Antioxidant. In: Hamza A.H., editor. Vitamin C. InTech; London, UK: 2017.
Smith T.A., Kirkpatrick D.R., Smith S., Smith T.K., Pearson T., Kailasam A., Herrmann K.Z., Schubert J., Agrawal D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Trans. Med. 2017;15:232. doi: 10.1186/s12967-017-1338-x. PubMed DOI PMC
Jagetia G.C. Recent Advances in Indian Herbal Drug Research Guest Editor: Thomas Paul Asir Devasagayam Radioprotective Potential of Plants and Herbs against the Effects of Ionizing Radiation. J. Clin. Biochem. Nutr. 2007;40:74–81. doi: 10.3164/jcbn.40.74. PubMed DOI PMC
Musa A.E., Omyan G., Esmaely F., Shabeeb D. Radioprotective Effect of Hesperidin: A Systematic Review. Medicina. 2019;55:370. doi: 10.3390/medicina55070370. PubMed DOI PMC
Goodhead D.T. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 1994;65:7–17. doi: 10.1080/09553009414550021. PubMed DOI
Favaloro B., Allocati N., Graziano V., Di Ilio C., De Laurenzi V. Role of apoptosis in disease. Aging (Albany NY) 2012;4:330–349. doi: 10.18632/aging.100459. PubMed DOI PMC
Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014;15:49–63. doi: 10.1038/nrm3722. PubMed DOI
Bures J., Jirkovska A., Sestak V., Jansova H., Karabanovich G., Roh J., Sterba M., Simunek T., Kovarikova P. Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase IIbeta but not its iron chelating metabolite. Toxicology. 2017;392:1–10. doi: 10.1016/j.tox.2017.09.012. PubMed DOI
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Trans. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Mustata G., Li M., Zevola N., Bakan A., Zhang L., Epperly M., Greenberger J.S., Yu J., Bahar I. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr. Top. Med. Chem. 2011;11:281–290. doi: 10.2174/156802611794072641. PubMed DOI PMC
Qi X., Davis B., Chiang Y.-H., Filichia E., Barnett A., Greig N.H., Hoffer B., Luo Y. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson’s disease model. J. Neurochem. 2016;138:746–757. doi: 10.1111/jnc.13706. PubMed DOI PMC
Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K. Radioprotection by plant products: Present status and future prospects. Phytother. Res. 2005;19:1–22. doi: 10.1002/ptr.1605. PubMed DOI
Nair G.G., Nair C.K.K. Radioprotective Effects of Gallic Acid in Mice. BioMed Res. Int. 2013;2013:1–13. doi: 10.1155/2013/953079. PubMed DOI PMC
Marek J., Tichy A., Havelek R., Seifrtova M., Filipova A., Andrejsova L., Kučera T., Prchal L., Muckova L., Rezacova M., et al. A Novel Class of Small Molecular Inhibitors with Radioprotective Properties. Eur. J. Med. Chem. 2020 doi: 10.1016/j.ejmech.2019.111606. in press. PubMed DOI
Korabecny J., Dolezal R., Cabelova P., Horova A., Hruba E., Ricny J., Sedlacek L., Nepovimova E., Spilovska K., Andrs M., et al. 7-MEOTA–donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2014;82:426–438. doi: 10.1016/j.ejmech.2014.05.066. PubMed DOI
PubChem (2R)-1-(4-Chloro-3-methylphenoxy)-3-[4-(2-hydroxyethyl)piperazin-1-yl]propan-2-ol. [(accessed on 12 November 2019)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1539752.
Dains F.B., Brewster R.Q., Blair J.S., Thompson W.C. THE SUBSTITUTED THIO-UREAS. III. THE SYNTHESIS OF THIAZOLIDINE AND THIAZANE DERIVATIVES. J. Am. Chem. Soc. 1922;44:2637–2643. doi: 10.1021/ja01432a035. DOI
Hutchinson T.H., Bögi C., Winter M.J., Owens J.W. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology. Aquatic Toxic. 2009;91:197–202. doi: 10.1016/j.aquatox.2008.11.009. PubMed DOI
Thoolen B., Maronpot R.R., Harada T., Nyska A., Rousseaux C., Nolte T., Malarkey D.E., Kaufmann W., Küttler K., Deschl U., et al. Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System. Toxicol. Pathol. 2010;38:5S–81S. doi: 10.1177/0192623310386499. PubMed DOI
Ghosh S.P., Perkins M.W., Hieber K., Kulkarni S., Kao T.-C., Reddy E.P., Reddy M.V.R., Maniar M., Seed T., Kumar K.S. Radiation protection by a new chemical entity, Ex-Rad: Efficacy and mechanisms. Radiat. Res. 2009;171:173–179. doi: 10.1667/RR1367.1. PubMed DOI
Ghosh S.P., Kulkarni S., Perkins M.W., Hieber K., Pessu R.L., Gambles K., Maniar M., Kao T.-C., Seed T.M., Kumar K.S. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radia. Res. 2012;53:526–536. doi: 10.1093/jrr/rrs001. PubMed DOI PMC
Tang J.Y., Mackay-Wiggan J.M., Aszterbaum M., Yauch R.L., Lindgren J., Chang K., Coppola C., Chanana A.M., Marji J., Bickers D.R., et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N. Engl. J. Med. 2012;366:2180–2188. doi: 10.1056/NEJMoa1113538. PubMed DOI PMC
Hosseinimehr S.J., Shafiee A., Mozdarani H., Akhlagpour S., Froughizadeh M. Radioprotective effects of 2-imino-3-[(chromone-2-yl)carbonyl] thiazolidines against gamma-irradiation in mice. J. Radiat. Res. 2002;43:293–300. doi: 10.1269/jrr.43.293. PubMed DOI
Mun G.-I., Kim S., Choi E., Kim C.S., Lee Y.-S. Pharmacology of natural radioprotectors. Arch. Pharma. Res. 2018;41:1033–1050. doi: 10.1007/s12272-018-1083-6. PubMed DOI PMC
Srinivasan V., Pendergrass J.A., Kumar K.S., Landauer M.R., Seed T.M. Radioprotection, pharmacokinetic and behavioural studies in mouse implanted with biodegradable drug (amifostine) pellets. Int. J. Radiat. Biol. 2002;78:535–543. doi: 10.1080/095530002317577358. PubMed DOI
Cassatt D.R., Fazenbaker C.A., Kifle G., Bachy C.M. Effects of dose and schedule on the efficacy of ethyol: Preclinical studies. Semin. Oncol. 2003;30:31–39. doi: 10.1053/j.seminoncol.2003.11.039. PubMed DOI
Ashkenazi A., Fairbrother W.J., Leverson J.D., Souers A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017;16:273–284. doi: 10.1038/nrd.2016.253. PubMed DOI
Tichy A., Marek J., Havelek R., Pejchal J., Seifrtova M., Zarybnicka L., Filipova A., Rezacova M., Sinkorova Z. New Light on An Old Friend: Targeting PUMA in Radioprotection and Therapy of Cardiovascular and Neurodegenerative Diseases. Curr. Drug Targets. 2018;19:1943–1957. doi: 10.2174/1389450119666180406110743. PubMed DOI
Souers A.J., Leverson J.D., Boghaert E.R., Ackler S.L., Catron N.D., Chen J., Dayton B.D., Ding H., Enschede S.H., Fairbrother W.J., et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013;19:202–208. doi: 10.1038/nm.3048. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Muckova L., Pejchal J., Jost P., Vanova N., Herman D., Jun D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem. Toxicol. 2019;42:252–256. doi: 10.1080/01480545.2018.1432641. PubMed DOI
Misik J., Nepovimova E., Pejchal J., Kassa J., Korabecny J., Soukup O. Cholinesterase Inhibitor 6-Chlorotacrine - In vivo Toxicological Profile and Behavioural Effects. Curr. Alzheimer Res. 2018;15:552–560. doi: 10.2174/1567205015666171212105412. PubMed DOI
Second-generation piperazine derivatives as promising radiation countermeasures