Members of the family Pospiviroidae have single-stranded circular RNA genomes that adopt a rod-like or a quasi-rod-like conformation. These genomes contain a central conserved region that is involved in replication in the nucleus through an asymmetric RNA-RNA rolling-circle mechanism. Members of the family Pospiviroidae lack the hammerhead ribozymes that are typical of viroids classified in the family Avsunviroidae. The family Pospiviroidae includes the genera Apscaviroid, Cocadviroid, Coleviroid, Hostuviroid and Pospiviroid, with >25 species. This is a summary of the ICTV Report on the family Pospiviroidae, which is available at ictv.global/report/pospiviroidae.
Transcription factors (TFs) play a major role in controlling gene expression by intricately regulating diverse biological processes such as growth and development, the response to external stimuli and the activation of defense responses. The systematic identification and classification of TF genes are essential to gain insight into their evolutionary history, biological roles, and regulatory networks. In this study, we performed a global mining and characterization of hop TFs and their involvement in Citrus bark cracking viroid CBCVd infection by employing a digital gene expression analysis. Our systematic analysis resulted in the identification of a total of 3,818 putative hop TFs that were classified into 99 families based on their conserved domains. A phylogenetic analysis classified the hop TFs into several subgroups based on a phylogenetic comparison with reference TF proteins from Arabidopsis thaliana providing glimpses of their evolutionary history. Members of the same subfamily and subgroup shared conserved motif compositions. The putative functions of the CBCVd-responsive hop TFs were predicted using their orthologous counterparts in A. thaliana. The analysis of the expression profiling of the CBCVd-responsive hop TFs revealed a massive differential modulation, and the expression of the selected TFs was validated using qRT-PCR. Together, the comprehensive integrated analysis in this study provides better insights into the TF regulatory networks associated with CBCVd infections in the hop, and also offers candidate TF genes for improving the resistance in hop against viroids.
- MeSH
- Phylogeny MeSH
- Humulus classification genetics immunology virology MeSH
- Plant Bark immunology virology MeSH
- Plant Diseases genetics immunology virology MeSH
- Plant Proteins genetics immunology MeSH
- Gene Expression Profiling MeSH
- Transcription Factors genetics immunology MeSH
- Viroids genetics physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
- MeSH
- Humulus genetics metabolism virology MeSH
- Plant Leaves genetics metabolism virology MeSH
- Plant Diseases genetics virology MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Plant Viruses genetics isolation & purification physiology MeSH
- Gene Expression Profiling MeSH
- Viroids classification genetics isolation & purification physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Members of the family Avsunviroidae have a single-stranded circular RNA genome that adopts a rod-like or branched conformation and can form, in the strands of either polarity, hammerhead ribozymes involved in their replication in plastids through a symmetrical RNA-RNA rolling-circle mechanism. These viroids lack the central conserved region typical of members of the family Pospiviroidae. The family Avsunviroidae includes three genera, Avsunviroid, Pelamoviroid and Elaviroid, with a total of four species. This is a summary of the ICTV Report on the taxonomy of the family Avsunviroidae, which is available at http://www.ictv.global/report/avsunviroidae.
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
- MeSH
- Cucumis sativus virology MeSH
- Diospyros virology MeSH
- Humulus virology MeSH
- Host-Pathogen Interactions MeSH
- Nucleic Acid Conformation MeSH
- Mutation MeSH
- Plant Diseases virology MeSH
- Inverted Repeat Sequences MeSH
- Virus Replication * MeSH
- RNA, Viral chemistry genetics MeSH
- Plant Viruses genetics isolation & purification physiology MeSH
- Solanum lycopersicum virology MeSH
- Viroids genetics isolation & purification physiology MeSH
- Publication type
- Journal Article MeSH
Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTH-Myb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression.
- MeSH
- Host-Pathogen Interactions MeSH
- Plant Leaves growth & development metabolism virology MeSH
- RNA, Small Untranslated genetics metabolism MeSH
- RNA, Messenger genetics metabolism MeSH
- Molecular Sequence Data MeSH
- Plant Diseases genetics virology MeSH
- Plant Growth Regulators genetics metabolism MeSH
- RNA, Viral genetics metabolism MeSH
- Plant Proteins genetics metabolism MeSH
- Sequence Analysis, RNA MeSH
- Solanum lycopersicum genetics metabolism virology MeSH
- Nicotiana genetics metabolism virology MeSH
- Transcription Factors genetics metabolism MeSH
- Viroids genetics pathogenicity physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Viroid-derived small RNAs generated during hop stunt viroid (HSVd) pathogenesis may induce the symptoms found in the hop cultivar "Admiral", including observed shifts in phenylpropanoid metabolites and changes in petiole coloration. Using quantitative RT-PCR, we examined hop lupulin gland-specific genes that have been shown to be involved in phenylpropanoid metabolism, for altered expression in response to infection with two HSVd isolates, HSVd-g and CPFVd. Most notably, the expression of a gene encoding a key enzyme for phenylpropanoid synthesis, naringenin-chalcone synthase H1 (chs_H1), decreased up to 40-fold in infected samples. In addition, a marked decrease in the expression of HlbHLH2 and an increase in the expression of HlMyb3 were observed. These two genes encode transcription factors that form a ternary complex with HlWDR1 for chs_H1 promoter activation. In a transient expression assay, a decrease in the ternary complex potential to activate the chs_H1 promoter was observed upon the decrease of HlbHLH2 expression. In addition, targeting of the chs_H1 transcript by vd-sRNAs may contribute to these expression changes. Our data show that HSVd infection causes a significant imbalance in the expression of phenylpropanoid metabolite-affecting genes via a complex mechanism, possibly involving regulatory disorders and direct targeting by vd-sRNA.
- MeSH
- Acyltransferases genetics metabolism MeSH
- Down-Regulation MeSH
- Gene Expression MeSH
- Humulus enzymology genetics virology MeSH
- Plant Leaves enzymology genetics virology MeSH
- RNA, Messenger chemistry genetics MeSH
- Plant Diseases virology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Propanols metabolism MeSH
- Gene Expression Regulation, Enzymologic * MeSH
- Gene Expression Regulation, Plant MeSH
- RNA Interference MeSH
- RNA, Plant chemistry genetics MeSH
- RNA, Viral chemistry genetics MeSH
- Plant Proteins genetics metabolism MeSH
- Plant Stems enzymology genetics virology MeSH
- Transcription Factors genetics metabolism MeSH
- Up-Regulation MeSH
- Viroids pathogenicity physiology MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Viroid-caused pathogenesis is a specific process dependent on viroid and host genotype(s), and may involve viroid-specific small RNAs (vsRNAs). We describe a new PSTVd variant C3, evolved through sequence adaptation to the host chamomile (Matricaria chamomilla) after biolistic inoculation with PSTVd-KF440-2, which causes extraordinary strong ('lethal') symptoms. The deletion of a single adenine A in the oligoA stretch of the pathogenicity (P) domain appears characteristic of PSTVd-C3. The pathogenicity and the vsRNA pool of PSTVd-C3 were compared to those of lethal variant PSTVd-AS1, from which PSTVd-C3 differs by five mutations located in the P domain. Both lethal viroid variants showed higher stability and lower variation in analyzed vsRNA pools than the mild PSTVd-QFA. PSTVd-C3 and -AS1 caused similar symptoms on chamomile, tomato, and Nicotiana benthamiana, and exhibited similar but species-specific distributions of selected vsRNAs as quantified using TaqMan probes. Both lethal PSTVd variants block biosynthesis of lignin in roots of cultured chamomile and tomato. Four 'expression markers' (TCP3, CIPK, VSF-1, and VPE) were selected from a tomato EST library to quantify their expression upon viroid infection; these markers were strongly downregulated in tomato leaf blades infected by PSTVd-C3- and -AS1 but not by PSTVd-QFA.
- MeSH
- Adaptation, Physiological * MeSH
- Genetic Markers genetics MeSH
- Host-Pathogen Interactions MeSH
- Lignin metabolism MeSH
- RNA, Small Untranslated genetics MeSH
- Matricaria virology MeSH
- RNA, Messenger genetics metabolism MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- RNA, Viral genetics MeSH
- Base Sequence MeSH
- Solanum lycopersicum virology MeSH
- Solanum tuberosum metabolism virology MeSH
- Thermodynamics MeSH
- Viroids genetics pathogenicity physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH