Changes in the Local Conformational States Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Seven Force Fields with and without NBFIX and ECC Corrections

. 2022 Jan 08 ; 14 (2) : . [epub] 20220108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054659

Grantová podpora
14.W03.31.0014, MegaGrant Ministry of Science and Higher Education of the Russian Federation
19-19561S Czech Science Foundation

Electrostatic interactions have a determining role in the conformational and dynamic behavior of polyelectrolyte molecules. In this study, anionic polyelectrolyte molecules, poly(glutamic acid) (PGA) and poly(aspartic acid) (PASA), in a water solution with the most commonly used K+ or Na+ counterions, were investigated using atomistic molecular dynamics (MD) simulations. We performed a comparison of seven popular force fields, namely AMBER99SB-ILDN, AMBER14SB, AMBER-FB15, CHARMM22*, CHARMM27, CHARMM36m and OPLS-AA/L, both with their native parameters and using two common corrections for overbinding of ions, the non-bonded fix (NBFIX), and electronic continuum corrections (ECC). These corrections were originally introduced to correct for the often-reported problem concerning the overbinding of ions to the charged groups of polyelectrolytes. In this work, a comparison of the simulation results with existing experimental data revealed several differences between the investigated force fields. The data from these simulations and comparisons with previous experimental data were then used to determine the limitations and strengths of these force fields in the context of the structural and dynamic properties of anionic polyamino acids. Physical properties, such as molecular sizes, local structure, and dynamics, were studied using two types of common counterions, namely potassium and sodium. The results show that, in some cases, both the macroion size and dynamics depend strongly on the models (parameters) for the counterions due to strong overbinding of the ions and charged side chain groups. The local structures and dynamics are more sensitive to dihedral angle parameterization, resulting in a preference for defined monomer conformations and the type of correction used. We also provide recommendations based on the results.

Zobrazit více v PubMed

Cisneros G.A., Karttunen M., Ren P., Sagui C. Classical electrostatics for biomolecular simulations. Chem. Rev. 2014;114:779–814. doi: 10.1021/cr300461d. PubMed DOI PMC

Catte A., Girych M., Javanainen M., Loison C., Melcr J., Miettinen M.S., Monticelli L., Määttä J., Oganesyan V.S., Ollila O.H.S., et al. Molecular electrometer and binding of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016;18:32560–32569. doi: 10.1039/C6CP04883H. PubMed DOI

Yoo J., Aksimentiev A. New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018;20:8432–8449. doi: 10.1039/C7CP08185E. PubMed DOI PMC

Leontyev I.V., Stuchebrukhov A.A. Electronic continuum model for molecular dynamics simulations of biological molecules. J. Chem. Theory Comput. 2010;6:1498–1508. doi: 10.1021/ct9005807. PubMed DOI PMC

Melcr J., Martinez-Seara H., Nencini R., Kolafa J., Jungwirth P., Ollila O.H.S. Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. J. Phys. Chem. B. 2018;122:4546–4557. doi: 10.1021/acs.jpcb.7b12510. PubMed DOI

Vanommeslaeghe K., MacKerell A.D. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim. Biophys. Acta Gen. Subj. 2015;1850:861–871. doi: 10.1016/j.bbagen.2014.08.004. PubMed DOI PMC

Lopes P.E.M., Guvench O., MacKerell A.D. Current status of protein force fields for molecular dynamics simulations. In: Kukol A., editor. Molecular Modeling of Proteins. 2nd ed. Humana Press; New York, NY, USA: 2014. pp. 47–71. PubMed DOI PMC

Lemkul J.A., Huang J., Roux B., MacKerell J.A.D. An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications. Chem. Rev. 2016;116:4983–5013. doi: 10.1021/acs.chemrev.5b00505. PubMed DOI PMC

Baker C.M. Polarizable force fields for molecular dynamics simulations of biomolecules. WIREs Comput. Mol. Sci. 2015;5:241–254. doi: 10.1002/wcms.1215. DOI

Jing Z., Liu C., Cheng S.Y., Qi R., Walker B.D., Piquemal J.-P., Ren P. Polarizable force fields for biomolecular simulations: Recent advances and applications. Annu. Rev. Biophys. 2019;48:371–394. doi: 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC

Bedrov D., Piquemal J.-P., Borodin O., MacKerell A.D., Roux B., Schröder C. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 2019;119:7940–7995. doi: 10.1021/acs.chemrev.8b00763. PubMed DOI PMC

Church A.T., Hughes Z.E., Walsh T.R. Improving the description of interactions between Ca2+ and protein carboxylate groups, including γ-carboxyglutamic acid: Revised CHARMM22* parameters. RSC Adv. 2015;5:67820–67828. doi: 10.1039/C5RA11268K. DOI

Leontyev I., Stuchebrukhov A. Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/c0cp01971b. PubMed DOI

Tolmachev D.A., Boyko O.S., Lukasheva N.V., Martinez-Seara H., Karttunen M. Overbinding and qualitative and quantitative changes caused by simple Na+ and K+ Ions in polyelectrolyte simulations: Comparison of force fields with and without NBFIX and ECC corrections. J. Chem. Theory Comput. 2019;16:677–687. doi: 10.1021/acs.jctc.9b00813. PubMed DOI

Duboué-Dijon E., Javanainen M., Delcroix P., Jungwirth P., Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J. Chem. Phys. 2020;153:050901. doi: 10.1063/5.0017775. PubMed DOI

Levin Y. Electrostatic correlations: From plasma to biology. Rep. Prog. Phys. 2002;65:1577–1632. doi: 10.1088/0034-4885/65/11/201. DOI

Park S.Y., Bruinsma R.F., Gelbart W.M. Spontaneous overcharging of macro-ion complexes. EPL Europhys. Lett. 1999;46:454–460. doi: 10.1209/epl/i1999-00284-x. DOI

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC

Marchand G., Soetens J.-C., Jacquemin D., Bopp P.A. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution. J. Chem. Phys. 2015;143:224505. doi: 10.1063/1.4937156. PubMed DOI

Vitalini F., Noé F., Keller B. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields. Data Brief. 2016;7:582–590. doi: 10.1016/j.dib.2016.02.086. PubMed DOI PMC

Hollingsworth S.A., Karplus P.A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol. Concepts. 2010;1:271–283. doi: 10.1515/bmc.2010.022. PubMed DOI PMC

Jha A.K., Colubri A., Zaman M.H., Koide S., Sosnick T.R., Freed K.F. Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library. Biochemistry. 2005;44:9691–9702. doi: 10.1021/bi0474822. PubMed DOI

Hagarman A., Measey T.J., Mathieu D., Schwalbe H., Schweitzer-Stenner R. Intrinsic propensities of amino acid residues in GxG peptides inferred from Amide I′ band profiles and NMR scalar coupling constants. J. Am. Chem. Soc. 2010;132:540–551. doi: 10.1021/ja9058052. PubMed DOI

Grdadolnik J., Mohacek-Grosev V., Baldwin R.L., Avbelj F. Populations of the three major backbone conformations in 19 amino acid dipeptides. Proc. Natl. Acad. Sci. USA. 2011;108:1794–1798. doi: 10.1073/pnas.1017317108. PubMed DOI PMC

Saudek V., Schmidt P. Conformational study of poly(α-L-aspartic acid) Biopolymers. 1982;21:1011–1020. doi: 10.1002/bip.360210602. DOI

Gooding E.A., Sharma S., Petty S.A., Fouts E.A., Palmer C.J., Nolan B.E., Volk M. pH-dependent helix folding dynamics of poly-glutamic acid. Chem. Phys. 2013;422:115–123. doi: 10.1016/j.chemphys.2012.11.009. DOI

Bordi F., Cametti C., Paradossi G. Conformational transition in aqueous solution of poly(L-glutamic acid): A low-frequency electrical conductivity study. J. Phys. Chem. 1992;96:913–918. doi: 10.1021/j100181a070. DOI

Mikhonin A.V., Myshakina N.S., Bykov A.S.V., Asher S.A. UV Resonance raman determination of polyproline II, extended 2.51-Helix, and β-Sheet Ψ angle energy landscape in Poly-l-Lysine and Poly-l-Glutamic acid. J. Am. Chem. Soc. 2005;127:7712–7720. doi: 10.1021/ja044636s. PubMed DOI

Whynes R., Volk M., Tavender S.M., Towrie M. UV resonance Raman spectroscopy reveals details of the “random coil” state of polypeptides. Cent. Laser Facil. Annu. Rep. 2008:169–172.

Xiong K., Ma L., Asher S.A. Conformation of poly-l-glutamate is independent of ionic strength. Biophys. Chem. 2012;162:1–5. doi: 10.1016/j.bpc.2011.11.002. PubMed DOI PMC

Leontyev I.V., Stuchebrukhov A.A. Electronic continuum model for molecular dynamics simulations. J. Chem. Phys. 2009;130:085102. doi: 10.1063/1.3060164. PubMed DOI PMC

Terauchi M., Tamura A., Tonegawa A., Yamaguchi S., Yoda T., Yui N. Polyelectrolyte complexes between Polycarboxylates and BMP-2 for Enhancing Osteogenic differentiation: Effect of chemical structure of Polycarboxylates. Polymers. 2019;11:1327. doi: 10.3390/polym11081327. PubMed DOI PMC

Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Wang L.-P., McKiernan K.A., Gomes J., Beauchamp K.A., Head-Gordon T., Rice J.E., Swope W.C., Martínez T.J., Pande V.S. Building a more predictive protein force field: A systematic and reproducible route to AMBER-FB15. J. Phys. Chem. B. 2017;121:4023–4039. doi: 10.1021/acs.jpcb.7b02320. PubMed DOI PMC

Mackerell A.D., Jr., Feig M., Brooks C.L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004;25:1400–1415. doi: 10.1002/jcc.20065. PubMed DOI

Huang J., Rauscher S., Nawrocki G., Ran T., Feig G.N.M., De Groot B.L., Grubmüller H., Jr., MacKerell A.D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Piana S., Lindorff-Larsen K., Shaw D.E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 2011;100:L47–L49. doi: 10.1016/j.bpj.2011.03.051. PubMed DOI PMC

Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Wang L.-P., Martinez T.J., Pande V.S. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014;5:1885–1891. doi: 10.1021/jz500737m. PubMed DOI PMC

MacKerell A.D., Jr., Bashford D., Bellott M.L., Dunbrack R.L., Jr., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

Yoo J., Aksimentiev A. Improved parametrization of Li+, Na+, K+, and Mg2+ Ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 2012;3:45–50. doi: 10.1021/jz201501a. DOI

Duboué-Dijon E., Delcroix P., Martinez-Seara H., Hladílková J., Coufal P., Křížek T., Jungwirth P. Binding of divalent cations to insulin: Capillary electrophoresis and molecular simulations. J. Phys. Chem. B. 2018;122:5640–5648. doi: 10.1021/acs.jpcb.7b12097. PubMed DOI

Melcr J., Piquemal J.-P. Accurate biomolecular simulations account for electronic polarization. Front. Mol. Biosci. 2019;6:143. doi: 10.3389/fmolb.2019.00143. PubMed DOI PMC

Kohagen M., Mason P., Jungwirth P. Accounting for electronic polarization effects in Aqueous Sodium chloride via molecular dynamics aided by neutron scattering. J. Phys. Chem. B. 2015;120:1454–1460. doi: 10.1021/acs.jpcb.5b05221. PubMed DOI

Kohagen M., Mason P., Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B. 2014;118:7902–7909. doi: 10.1021/jp5005693. PubMed DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 2002;100:191–198. doi: 10.1080/00268970110089108. DOI

Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008;4:116–122. doi: 10.1021/ct700200b. PubMed DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Jephthah S., Pesce F., Lindorff-Larsen K., Skepö M. Force field effects in simulations of flexible peptides with varying Polyproline II propensity. J. Chem. Theory Comput. 2021;17:6634–6646. doi: 10.1021/acs.jctc.1c00408. PubMed DOI PMC

Enkhbayar P., Hikichi K., Osaki M., Kretsinger R.H., Matsushima N. 310-helices in proteins are parahelices. Proteins Struct. Funct. Bioinform. 2006;64:691–699. doi: 10.1002/prot.21026. PubMed DOI

Batys P., Morga M., Bonarek P., Sammalkorpi M. pH-induced changes in Polypeptide conformation: Force-field comparison with experimental validation. J. Phys. Chem. B. 2020;124:2961–2972. doi: 10.1021/acs.jpcb.0c01475. PubMed DOI PMC

Wang D., Marszalek P.E. Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways. J. Chem. Theory Comput. 2020;16:3240–3252. doi: 10.1021/acs.jctc.0c00080. PubMed DOI

Gopal S.M., Wingbermühle S., Schnatwinkel J., Juber S., Herrmann C., Schäfer L.V. Conformational preferences of an intrinsically disordered protein domain: A case study for modern force fields. J. Phys. Chem. B. 2021;125:24–35. doi: 10.1021/acs.jpcb.0c08702. PubMed DOI

Fersht A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. 1st ed. Volume 9. W. H. Freeman; New York, NY, USA: 1998.

Henzler-Wildman K., Kern D. Dynamic personalities of proteins. Nature. 2007;450:964–972. doi: 10.1038/nature06522. PubMed DOI

Fuxreiter M. Computational Approaches to Protein Dynamics: From Quantum to Coarse-Grained Methods (Series in Computational Biophysics) 1st ed. CRC Press; Abingdon, UK: 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace