Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29812937
PubMed Central
PMC6150695
DOI
10.1021/acs.jpcb.8b02250
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- Helicobacter pylori metabolismus MeSH
- izotopy dusíku chemie MeSH
- membránové proteiny chemie metabolismus MeSH
- proteinové domény MeSH
- simulace molekulární dynamiky * MeSH
- spinové značení MeSH
- vnitřně neuspořádané proteiny chemie metabolismus MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- izotopy dusíku MeSH
- membránové proteiny MeSH
- Nitrogen-15 MeSH Prohlížeč
- spinové značení MeSH
- tonB protein, Bacteria MeSH Prohlížeč
- vnitřně neuspořádané proteiny MeSH
- voda MeSH
Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.
Zobrazit více v PubMed
Jarymowycz V. A.; Stone M. J. Fast Time Scale Dynamics of Protein Backbones: NMR Relaxation Methods, Applications, and Functional Consequences. Chem. Rev. 2006, 106, 1624–1671. 10.1021/cr040421p. PubMed DOI
Korzhnev D. M.; Billeter M.; Arseniev A. S.; Orekhov V. Y. NMR Studies of Brownian Tumbling and Internal Motions in Proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 38, 197–266. 10.1016/s0079-6565(00)00028-5. DOI
Mulder F. A. A.; Mittermaier A.; Hon B.; Dahlquist F. W.; Kay L. E. Studying Excited States of Proteins by NMR Spectroscopy. Nat. Struct. Mol. Biol. 2001, 8, 932–935. 10.1038/nsb1101-932. PubMed DOI
Eisenmesser E. Z.; Millet O.; Labeikovsky W.; Korzhnev D. M.; Wolf-Watz M.; Bosco D. A.; Skalicky J. J.; Kay L. E.; Kern D. Intrinsic Dynamics of an Enzyme Underlies Catalysis. Nature 2005, 438, 117–121. 10.1038/nature04105. PubMed DOI
Van den Bedem H.; Fraser J. S. Integrative, Dynamic Structural Biology at Atomic Resolution–It’s About Time. Nat. Methods 2015, 12, 307–318. 10.1038/nmeth.3324. PubMed DOI PMC
Lewandowski J. R.; Halse M. E.; Blackledge M.; Emsley L. Direct Observation of Hierarchical Protein Dynamics. Science 2015, 348, 578–581. 10.1126/science.aaa6111. PubMed DOI
Lamley J. M.; Lougher M. J.; Sass H. J.; Rogowski M.; Grzesiek S.; Lewandowski J. R. Unraveling the Complexity of Protein Backbone Dynamics with Combined 13C and 15N Solid-state NMR Relaxation Measurements. Phys. Chem. Chem. Phys. 2015, 17, 21997–22008. 10.1039/c5cp03484a. PubMed DOI
Yang D.; Kay L. E. Contributions to Conformational Entropy Arising from Bond Vector Fluctuations Measured from NMR-Derived Order Parameters: Application to Protein Folding. J. Mol. Biol. 1996, 263, 369–382. 10.1006/jmbi.1996.0581. PubMed DOI
Kasinath V.; Sharp K. A.; Wand A. J. Microscopic Insights into the NMR Relaxation-Based Protein Conformational Entropy Meter. J. Am. Chem. Soc. 2013, 135, 15092–15100. 10.1021/ja405200u. PubMed DOI PMC
Allnér O.; Foloppe N.; Nilsson L. Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. J. Phys. Chem. B 2015, 119, 1114–1128. 10.1021/jp506609g. PubMed DOI
Solomentsev G.; Diehl C.; Akke M. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations. Biochemistry 2018, 57, 1451–1461. 10.1021/acs.biochem.7b01256. PubMed DOI
Akke M.; Brueschweiler R.; Palmer A. G. NMR Order Parameters and Free Energy: an Analytical Approach and Its Application to Cooperative Calcium(2+) Binding by Calbindin D9k. J. Am. Chem. Soc. 1993, 115, 9832–9833. 10.1021/ja00074a073. DOI
Sanchez-Medina C.; Sekhar A.; Vallurupalli P.; Cerminara M.; Muñoz V.; Kay L. E. Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR. J. Am. Chem. Soc. 2014, 136, 7444–7451. 10.1021/ja502705y. PubMed DOI
Best R. B.; Vendruscolo M. Determination of Protein Structures Consistent with NMR Order Parameters. J. Am. Chem. Soc. 2004, 126, 8090–8091. 10.1021/ja0396955. PubMed DOI
Showalter S. A.; Brüschweiler R. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field. J. Chem. Theory Comput. 2007, 3, 961–975. 10.1021/ct7000045. PubMed DOI
Showalter S. A.; Johnson E.; Rance M.; Brüschweiler R. Toward Quantitative Interpretation of Methyl Side-Chain Dynamics from NMR by Molecular Dynamics Simulations. J. Am. Chem. Soc. 2007, 129, 14146–14147. 10.1021/ja075976r. PubMed DOI
Maragakis P.; Lindorff-Larsen K.; Eastwood M. P.; Dror R. O.; Klepeis J. L.; Arkin I. T.; Jensen M. Ø.; Xu H.; Trbovic N.; Friesner R. A.; et al. Microsecond Molecular Dynamics Simulation Shows Effect of Slow Loop Dynamics on Backbone Amide Order Parameters of Proteins. J. Phys. Chem. B 2008, 112, 6155–6158. 10.1021/jp077018h. PubMed DOI PMC
Trbovic N.; Kim B.; Friesner R. A.; Palmer A. G. Structural Analysis of Protein Dynamics by MD Simulations and NMR Spin-relaxation. Proteins: Struct., Funct., Bioinf. 2008, 71, 684–694. 10.1002/prot.21750. PubMed DOI PMC
Debiec K. T.; Cerutti D. S.; Baker L. R.; Gronenborn A. M.; Case D. A.; Chong L. T. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model. J. Chem. Theory Comput. 2016, 12, 3926–3947. 10.1021/acs.jctc.6b00567. PubMed DOI PMC
Hoffmann F.; Mulder F. A. A.; Schäfer L. V. Accurate Methyl Group Dynamics in Protein Simulations with AMBER Force Fields. J. Phys. Chem. B 2018, 122, 5038–5048. 10.1021/acs.jpcb.8b02769. PubMed DOI
Debiec K. T.; Whitley M. J.; Koharudin L. M. I.; Chong L. T.; Gronenborn A. M. Integrating NMR, SAXS, and Atomistic Simulations: Structure and Dynamics of a Two-Domain Protein. Biophys. J. 2018, 114, 839–855. 10.1016/j.bpj.2018.01.001. PubMed DOI PMC
Wennerstroem H.; Lindman B.; Soederman O.; Drakenberg T.; Rosenholm J. B. Carbon-13 Magnetic Relaxation in Micellar Solutions. Influence of Aggregate Motion on T1. J. Am. Chem. Soc. 1979, 101, 6860–6864. 10.1021/ja00517a012. DOI
Lipari G.; Szabo A. Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. J. Am. Chem. Soc. 1982, 104, 4546–4559. 10.1021/ja00381a009. DOI
Woessner D. E. Nuclear Spin Relaxation in Ellipsoids Undergoing Rotational Brownian Motion. J. Chem. Phys. 1962, 37, 647–654. 10.1063/1.1701390. DOI
Shimizu H. Effect of Molecular Shape on Nuclear Magnetic Relaxation. J. Chem. Phys. 1962, 37, 765–778. 10.1063/1.1733159. DOI
Luginbühl P.; Pervushin K. V.; Iwai H.; Wüthrich K. Anisotropic Molecular Rotational Diffusion in 15N Spin Relaxation Studies of Protein Mobility. Biochemistry 1997, 36, 7305–7312. 10.1021/bi963161h. PubMed DOI
Blake-Hall J.; Walker O.; Fushman D. In Protein NMR Techniques; Downing A. K., Ed.; Humana Press: Totowa, NJ, 2004; pp 139–159.
Prompers J. J.; Brüschweiler R. General Framework for Studying the Dynamics of Folded and Nonfolded Proteins by NMR Relaxation Spectroscopy and MD Simulation. J. Am. Chem. Soc. 2002, 124, 4522–4534. 10.1021/ja012750u. PubMed DOI
Wong V.; Case D. A. Evaluating Rotational Diffusion from Protein MD Simulations. J. Phys. Chem. B 2008, 112, 6013–6024. 10.1021/jp0761564. PubMed DOI
Anderson J. S.; LeMaster D. M. Rotational Velocity Rescaling of Molecular Dynamics Trajectories for Direct Prediction of Protein NMR Relaxation. Biophys. Chem. 2012, 168, 28–39. 10.1016/j.bpc.2012.05.005. PubMed DOI
Salvi N.; Abyzov A.; Blackledge M. Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. J. Phys. Chem. Lett. 2016, 7, 2483–2489. 10.1021/acs.jpclett.6b00885. PubMed DOI
Takemura K.; Kitao A. Water Model Tuning for Improved Reproduction of Rotational Diffusion and NMR Spectral Density. J. Phys. Chem. B 2012, 116, 6279–6287. 10.1021/jp301100g. PubMed DOI
Lu C.-Y.; Bout D. A. V. Effect of Finite Trajectory Length on the Correlation Function Analysis of Single Molecule Data. J. Chem. Phys. 2006, 125, 124701.10.1063/1.2352748. PubMed DOI
Ciragan A.; Aranko A. S.; Tascon I.; Iwaï H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J. Mol. Biol. 2016, 428, 4573–4588. 10.1016/j.jmb.2016.10.006. PubMed DOI
Oeemig J. S.; Ollila O. H. S.; Iwaï H.. The NMR structure of the C-terminal domain of TonB protein from Pseudomonas aeruginosa, 2018, submitted. PubMed PMC
Abragam A.The Principles of Nuclear Magnetism; Oxford University Press, 1961.
Kay L. E.; Torchia D. A.; Bax A. Backbone Dynamics of Proteins as Studied by Nitrogen-15 Inverse Detected Heteronuclear NMR Spectroscopy: Application to Staphylococcal Nuclease. Biochemistry 1989, 28, 8972–8979. 10.1021/bi00449a003. PubMed DOI
Hiyama Y.; Niu C. H.; Silverton J. V.; Bavoso A.; Torchia D. A. Determination of 15N Chemical Shift Tensor via 15N-2H Dipolar Coupling in Boc-glycylglycyl[15N glycine]benzyl ester. J. Am. Chem. Soc. 1988, 110, 2378–2383. 10.1021/ja00216a006. DOI
Halle B. The Physical Basis of Model-free Analysis of NMR Relaxation Data From Proteins and Complex Fluids. J. Chem. Phys. 2009, 131, 224507.10.1063/1.3269991. PubMed DOI
Dosset P.; Hus J.-C.; Blackledge M.; Marion D. Efficient Analysis of Macromolecular Rotational Diffusion from Heteronuclear Relaxation Data. J. Biomol. NMR 2000, 16, 23–28. 10.1023/a:1008305808620. PubMed DOI
de la Torre J. G.; Huertas M.; Carrasco B. HYDRONMR: Prediction of NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic Calculations. J. Magn. Reson. 2000, 147, 138–146. 10.1006/jmre.2000.2170. PubMed DOI
Fisette O.; Lagüe P.; Gagné S.; Morin S. Synergistic Applications of MD and NMR for the Study of Biological Systems. J. Biomed. Biotechnol. 2012, 2012, 254208.10.1155/2012/254208. PubMed DOI PMC
Anderson J. S.; Hernández G.; LeMaster D. M. Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data. J. Chem. Theory Comput. 2017, 13, 3276–3289. 10.1021/acs.jctc.7b00387. PubMed DOI
Gu Y.; Li D.-W.; Brüschweiler R. NMR Order Parameter Determination from Long Molecular Dynamics Trajectories for Objective Comparison with Experiment. J. Chem. Theory Comput. 2014, 10, 2599–2607. 10.1021/ct500181v. PubMed DOI
Ollila O. H. S.MD simulation data for Pseudomonas aeruginosa TonB-CTD. Amber ff99SB-ILDN, tip3p, 298K, Gromacs, 2018, http://dx.doi.org/10.5281/zenodo.1244108.
Ollila O. H. S.MD simulation data for Pseudomonas aeruginosa TonB-CTD. Amber ff99SB-ILDN, tip4p, 298K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010415.
Ollila O. H. S.MD simulation data for Pseudomonas aeruginosa TonB-CTD. Amber ff99SB-ILDN, tip4p, 310K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010405.
Ollila O. H. S.MD simulation data for Pseudomonas aeruginosa TonB-CTD. Amber ff99SB-ILDN, OPC4, 310K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010437.
Ollila O. H. S.MD simulation data for Helicobacter pylori TonB-CTD (residues 194-285) (PDB ID: 5LW8; BMRB entry: 34043). Amber ff99SB-ILDN, tip3p, 310K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010231.
Ollila O. H. S.MD simulation data for Helicobacter pylori TonB-CTD (residues 194-285) (PDB ID: 5LW8; BMRB entry: 34043). Amber ff99SB-ILDN, tip3p, 303K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010141.
Ollila O. H. S.MD simulation data for Helicobacter pylori TonB-CTD (residues 194-285) (PDB ID: 5LW8; BMRB entry: 34043). Amber ff99SB-ILDN, tip4p, 310K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010237.
Ollila O. H. S.MD simulation data for Helicobacter pylori TonB-CTD (residues 194-285) (PDB ID: 5LW8; BMRB entry: 34043). Amber ff99SB-ILDN, tip4p, 303K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010351.
Ollila O. H. S.. MD simulation data for Helicobacter pylori TonB-CTD (residues 194-285) (PDB ID: 5LW8; BMRB entry: 34043). Amber ff99SB-ILDN, OPC4, 310K, Gromacs, 2017, https://doi.org/10.5281/zenodo.1010356.
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations Through Multi-level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved Side-chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins: Struct., Funct., Bioinf. 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Potential. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI
Abraham M.; van der Spoel D.; Lindahl E.; Hess B. The GROMACS development team, GROMACS user manual. Version 5.0.7, 2015.
McGibbon R. T.; Beauchamp K. A.; Harrigan M. P.; Klein C.; Swails J. M.; Hernández C. X.; Schwantes C. R.; Wang L.-P.; Lane T. J.; Pande V. S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–1532. 10.1016/j.bpj.2015.08.015. PubMed DOI PMC
MATLAB, R2016a; The MathWorks, Inc., Natick, Massachusetts, United States.
Nowacka A.; Bongartz N. A.; Ollila O. H. S.; Nylander T.; Topgaard D. Signal Intensities in 1H–13C CP and INEPT MAS NMR of Liquid Crystals. J. Magn. Reson. 2013, 230, 165–175. 10.1016/j.jmr.2013.02.016. PubMed DOI
Ferreira T. M.; Ollila O. H. S.; Pigliapochi R.; Dabkowska A. P.; Topgaard D. Model-free Estimation of the Effective Correlation Time for C-H Bond Reorientation in Amphiphilic Bilayers: 1H-13C Solid-state NMR and MD Simulations. J. Chem. Phys. 2015, 142, 044905.10.1063/1.4906274. PubMed DOI
Ollila O. H. S. ProteinDynamics, 2017, https://doi.org/10.5281/zenodo.1288573.
Barbato G.; Ikura M.; Kay L. E.; Pastor R. W.; Bax A. Backbone Dynamics of Calmodulin Studied by Nitrogen-15 Relaxation Using Inverse Detected Two-dimensional NMR Spectroscopy: The Central Helix is Flexible. Biochemistry 1992, 31, 5269–5278. 10.1021/bi00138a005. PubMed DOI
Farrow N. A.; Muhandiram R.; Singer A. U.; Pascal S. M.; Kay C. M.; Gish G.; Shoelson S. E.; Pawson T.; Forman-Kay J. D.; Kay L. E. Backbone Dynamics of a Free and a Phosphopeptide-Complexed Src Homology 2 Domain Studied by 15N NMR Relaxation. Biochemistry 1994, 33, 5984–6003. 10.1021/bi00185a040. PubMed DOI
Krishnan V. V.; Cosman M. An Empirical Relationship Between Rotational Correlation Time and Solvent Accessible Surface Area. J. Biomol. NMR 1998, 12, 177–182. 10.1023/a:1008226330666. PubMed DOI
Carper W. R.; Keller C. E. Direct Determination of NMR Correlation Times from Spin-Lattice and Spin-Spin Relaxation Times. J. Phys. Chem. A 1997, 101, 3246–3250. 10.1021/jp963338h. DOI
Frishman D.; Argos P. Knowledge-based Protein Secondary Structure Assignment. Proteins: Struct., Funct., Bioinf. 1995, 23, 566–579. 10.1002/prot.340230412. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD – Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. H. S. Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI
Höfling F.; Franosch T. Anomalous Transport in the Crowded World of Biological Cells. Rep. Prog. Phys. 2013, 76, 046602.10.1088/0034-4885/76/4/046602. PubMed DOI
Linke M.; Köfinger J.; Hummer G. Fully Anisotropic Rotational Diffusion Tensor from Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 5630.10.1021/acs.jpcb.7b11988. PubMed DOI
Chen P.-c.; Hologne M.; Walker O.; Hennig J. Ab Initio Prediction of NMR Spin Relaxation Parameters from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018, 14, 1009–1019. 10.1021/acs.jctc.7b00750. PubMed DOI