NMR structure of the C-terminal domain of TonB protein from Pseudomonas aeruginosa
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30186676
PubMed Central
PMC6118199
DOI
10.7717/peerj.5412
PII: 5412
Knihovny.cz E-zdroje
- Klíčová slova
- 15N relaxation, BtuB, Molecular dynamics, NMR, NMR structure, Outer membrane transporter, Protein structure, Pseudomonas aeruginosa, TonB, TonB-dependent energy transduction,
- Publikační typ
- časopisecké články MeSH
The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338-342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.
Zobrazit více v PubMed
Abragam A. The Principles of Nuclear Magnetism. Oxford: Oxford University Press; 1961.
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Amorim GCd, Prochnicka-Chalufour A, Delepelaire P, Lefèvre J, Simenel C, Wandersman C, Delepierre M, Izadi-Pruneyre N. The structure of HasB reveals a new class of TonB protein fold. PLOS ONE. 2013;8(3):e58964. doi: 10.1371/journal.pone.0058964. PubMed DOI PMC
Barbato G, Ikura M, Kay LE, Pastor RW, Bax A. Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992;31(23):5269–5278. doi: 10.1021/bi00138a005. PubMed DOI
Bhattacharya A, Tejero R, Montelione GT. Evaluating protein structures determined by structural genomics consortia. Proteins: Structure Function and Bioinformatics. 2007;66(4):778–795. doi: 10.1002/prot.21165. PubMed DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. Journal of Chemical Physics. 2007;126(1):014101. doi: 10.1063/1.2408420. PubMed DOI
Cadieux N, Kadner RJ. Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(19):10673–10678. doi: 10.1073/pnas.96.19.10673. PubMed DOI PMC
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the ton complex in energy transduction. Nature. 2016;538(7623):60–65. doi: 10.1038/nature19757. PubMed DOI PMC
Chang C, Mooser A, Plückthun A, Wlodawer A. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. Journal of Biological Chemistry. 2001;276(29):27535–27540. doi: 10.1074/jbc.M102778200. PubMed DOI
Chimento DP, Kadner RJ, Wiener MC. Comparative structural analysis of TonB-dependent outer membrane transporters: implications for the transport cycle. Proteins: Structure Function and Bioinformatics. 2005;59(2):240–251. doi: 10.1002/prot.20416. PubMed DOI
Ciragan A, Aranko AS, Tascon I, Iwaï H. Salt-inducible protein splicing in cis and trans by inteins from extremely halophilic archaea as a novel protein-engineering tool. Journal of Molecular Biology. 2016;428(23):4573–4588. doi: 10.1016/j.jmb.2016.10.006. PubMed DOI
Clarke TE, Tari LW, Vogel HJ. Structural biology of bacterial iron uptake systems. Current Topics in Medicinal Chemistry. 2001;1(1):7–30. doi: 10.2174/1568026013395623. PubMed DOI
Darden T, York D, Pedersen L. Particle mesh Ewald: an N · log(N) method for Ewald sums in large systems. Journal of Chemical Physics. 1993;98(12):10089–10092. doi: 10.1063/1.464397. DOI
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR. 1995;6(3):277–293. PubMed
Domingo Köhler S, Weber A, Howard SP, Welte W, Drescher M. The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria. Protein Science. 2010;19(4):625–630. doi: 10.1002/pro.345. PubMed DOI PMC
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. Journal of Chemical Physics. 1995;103(19):8577–8593. doi: 10.1063/1.470117. DOI
Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. Monomeric TonB and the ton box are required for the formation of a high-affinity transporter–TonB Complex. Biochemistry. 2013;52(15):2638–2648. doi: 10.1021/bi3016108. PubMed DOI PMC
Gresock MG, Savenkova MI, Larsen RA, Ollis AA, Postle K. Death of the TonB shuttle hypothesis. Frontiers in Microbiology. 2011;2:206. doi: 10.3389/fmicb.2011.00206. PubMed DOI PMC
Guerrero F, Ciragan A, Iwaï H. Tandem SUMO fusion vectors for improving soluble protein expression and purification. Protein Expression and Purification. 2015;116:42–49. doi: 10.1016/j.pep.2015.08.019. PubMed DOI
Gumbart J, Wiener MC, Tajkhorshid E. Mechanics of force propagation in tonb-dependent outer membrane transport. Biophysical Journal. 2007;93(2):496–504. doi: 10.1529/biophysj.107.104158. PubMed DOI PMC
Güntert P. Automated NMR structure calculation with CYANA. In: Downing AK, editor. Protein NMR Techniques. Totowa: Humana Press; 2004. pp. 353–378. PubMed
Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. Journal of Biomolecular NMR. 2015;62(4):453–471. doi: 10.1007/s10858-015-9924-9. PubMed DOI
Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program Dyana. Journal of Molecular Biology. 1997;273(1):283–298. doi: 10.1006/jmbi.1997.1284. PubMed DOI
Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation. 2008;4(1):116–122. doi: 10.1021/ct700200b. PubMed DOI
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nature Communications. 2017;8:14804. doi: 10.1038/ncomms14804. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chemical Reviews. 2006;106(5):1624–1671. doi: 10.1021/cr040421p. PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI
Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28(23):8972–8979. doi: 10.1021/bi00449a003. PubMed DOI
Klebba PE. ROSET model of TonB action in gram-negative bacterial iron acquisition. Journal of Bacteriology. 2016;198(7):1013–1021. doi: 10.1128/JB.00823-15. PubMed DOI PMC
Ködding J, Killig F, Polzer P, Howard SP, Diederichs K, Welte W. Crystal structure of a 92-residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments. Journal of Biological Chemistry. 2005;280(4):3022–3028. doi: 10.1074/jbc.M411155200. PubMed DOI
Koedding J, Howard P, Kaufmann L, Polzer P, Lustig A, Welte W. Dimerization of TonB is not essential for its binding to the outer membrane siderophore receptor FhuA of Escherichia coli. Journal of Biological Chemistry. 2004;279(11):9978–9986. doi: 10.1074/jbc.M311720200. PubMed DOI
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta (BBA)—Biomembranes. 2008;1778(9):1781–1804. doi: 10.1016/j.bbamem.2007.07.026. PubMed DOI
Krishnan VV, Cosman M. An empirical relationship between rotational correlation time and solvent accessible surface area. Journal of Biomolecular NMR. 1998;12(1):177–182. doi: 10.1023/a:1008226330666. PubMed DOI
Letain TE, Postle K. TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Molecular Microbiology. 1997;24(2):271–283. doi: 10.1046/j.1365-2958.1997.3331703.x. PubMed DOI
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure Function and Bioinformatics. 2010;78(8):1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Mumenthaler C, Güntert P, Braun W, Wüthrich K. Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. Journal of Biomolecular NMR. 1997;10(4):351–362. PubMed
Ollila OHS. MD simulation data for Pseudomonas aeruginosa TonB-CTD, Amber ff99SB-ILDN, tip4p, 298K, Gromacs. Zenodo. 2018a doi: 10.5281/zenodo.1010415. DOI
Ollila OHS. Protein dynamics. GitHub. 2018b. https://github.com/ohsOllila/ProteinDynamics https://github.com/ohsOllila/ProteinDynamics
Ollila OHS. Spin relaxation data and related scripts of PaTonB-96. Zenodo. 2018c doi: 10.5281/zenodo.1299109. DOI
Ollila OHS, Heikkinen HA, Iwaï H. Rotational dynamics of proteins from spin relaxation times and molecular dynamics simulations. Journal of Physical Chemistry B. 2018;122(5):6559–6569. doi: 10.1021/acs.jpcb.8b02250. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics. 1981;52(12):7182–7190. doi: 10.1063/1.328693. DOI
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science. 2006;312(5778):1399–1402. doi: 10.1126/science.1128057. PubMed DOI
Peacock RS, Weljie AM, Peter Howard S, Price FD, Vogel HJ. The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. Journal of Molecular Biology. 2005;345(5):1185–1197. doi: 10.1016/j.jmb.2004.11.026. PubMed DOI
Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications. 1995;91(1–3):1–41. doi: 10.1016/0010-4655(95)00041-D. DOI
Postle K, Kastead KA, Gresock MG, Ghosh J, Swayne CD. The TonB dimeric crystal structures do not exist in vivo. mBio. 2010;1(5):e00307-10. doi: 10.1128/mBio.00307-10. PubMed DOI PMC
Postle K, Larsen RA. TonB-dependent energy transduction between outer and cytoplasmic membranes. BioMetals. 2007;20(3–4):453–465. doi: 10.1007/s10534-006-9071-6. PubMed DOI
Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Progress in Nuclear Magnetic Resonance Spectroscopy. 1999;34(2):93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI
Schrodinger LLC. The PyMOL molecular graphics system. Version 1.8https://www.schrodinger.com/pymol 2015
Schubert M, Labudde D, Oschkinat H, Schmieder P. A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. Journal of Biomolecular NMR. 2002;24(2):149–154. doi: 10.1023/a:1020997118364. PubMed DOI
Shultis DD, Purdy MD, Banchs CN, Wiener MC. Outer membrane active transport: structure of the BtuB:TonB complex. Science. 2006;312(5778):1396–1399. PubMed
Sverzhinsky A, Chung JW, Deme JC, Fabre L, Levey KT, Plesa M, Carter DM, Lypaczewski P, Coulton JW. Membrane protein complex ExbB4-ExbD1-TonB1 from Escherichia coli demonstrates conformational plasticity. Journal of Bacteriology. 2015;197(11):1873–1885. doi: 10.1128/jb.00069-15. PubMed DOI PMC
Van Den Bedem H, Fraser JS. Integrative, dynamic structural biology at atomic resolution—it’s about time. Nature Methods. 2015;12(4):307–318. doi: 10.1038/nmeth.3324. PubMed DOI PMC
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Structure Function and Bioinformatics. 2005;59(4):687–696. doi: 10.1002/prot.20449. PubMed DOI
White P, Joshi A, Rassam P, Housden NG, Kaminska R, Goult JD, Redfield C, McCaughey LC, Walker D, Mohammed S, Kleanthous C. Exploitation of an iron transporter for bacterial protein antibiotic import. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(45):12051–12056. doi: 10.1073/pnas.1713741114. PubMed DOI PMC
Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations