Exposure to Aldehyde Cherry e-Liquid Flavoring and Its Vaping Byproduct Disrupt Pulmonary Surfactant Biophysical Function

. 2024 Jan 23 ; 58 (3) : 1495-1508. [epub] 20240108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38186267

Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.

Zobrazit více v PubMed

Cao D. J.; Aldy K.; Hsu S.; McGetrick M.; Verbeck G.; De Silva I.; Feng S.-y. Review of health consequences of electronic cigarettes and the outbreak of electronic cigarette, or vaping, product use-associated lung injury. J. Med. Toxicol. 2020, 16, 295–310. 10.1007/s13181-020-00772-w. PubMed DOI PMC

Pepper J.; Ribisl K.; Brewer N. Adolescents’ interest in trying flavoured e-cigarettes. Tobac. Control 2016, 25, ii62–ii66. 10.1136/tobaccocontrol-2016-053174. PubMed DOI PMC

Wang T. W.; Gentzke A. S.; Creamer M. R.; Cullen K. A.; Holder-Hayes E.; Sawdey M. D.; Anic G. M.; Portnoy D. B.; Hu S.; Homa D. M.; Jamal A.; Neff L. J. Tobacco product use and associated factors among middle and high school students—United States, 2019. MMWR Surveill. Summ. 2019, 68, 1–22. 10.15585/mmwr.ss6812a1. PubMed DOI PMC

Ali N.; Xavier J.; Engur M.; Pv M.; Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. J. Hazard. Mater. 2023, 457, 131828.10.1016/j.jhazmat.2023.131828. PubMed DOI

Farsalinos K. E.; Polosa R. Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: A systematic review. Ther. Adv. Drug Saf. 2014, 5, 67–86. 10.1177/2042098614524430. PubMed DOI PMC

Werner A. K.; Koumans E. H.; Chatham-Stephens K.; Salvatore P. P.; Armatas C.; Byers P.; Clark C. R.; Ghinai I.; Holzbauer S. M.; Navarette K. A.; Danielson M. L.; Ellington S.; Moritz E. D.; Petersen E. E.; Kiernan E. A.; Baldwin G. T.; Briss P.; Jones C. M.; King B. A.; Krishnasamy V.; Rose D. A.; Reagan-Steiner S. Hospitalizations and deaths associated with EVALI. N. Engl. J. Med. 2020, 382, 1589–1598. 10.1056/NEJMoa1915314. PubMed DOI PMC

Wilson G. L.; Keenan J.; Grogan S.; Porcellato L.; Powell S.; Gee I. An investigation of factors encouraging and deterring EC use: a thematic analysis of accounts from UK adults. Psychol. Health 2022, 37, 1379–1395. 10.1080/08870446.2021.1952583. PubMed DOI

Hartnett K. P.; Kite-Powell A.; Patel M. T.; Haag B. L.; Sheppard M. J.; Dias T. P.; King B. A.; Melstrom P. C.; Ritchey M. D.; Stein Z.; Idaikkadar N.; Vivolo-Kantor A. M.; Rose D. A.; Briss P. A.; Layden J. E.; Rodgers L.; Adjemian J. Syndromic surveillance for e-cigarette, or vaping, product use–associated lung injury. N. Engl. J. Med. 2020, 382, 766–772. 10.1056/NEJMsr1915313. PubMed DOI PMC

Shinbashi M.; Rubin B. K. Electronic cigarettes and e-cigarette/vaping product use associated lung injury (EVALI). Paediatr. Respir. Rev. 2020, 36, 87–91. 10.1016/j.prrv.2020.06.003. PubMed DOI

Butt Y. M.; Smith M. L.; Tazelaar H. D.; Vaszar L. T.; Swanson K. L.; Cecchini M. J.; Boland J. M.; Bois M. C.; Boyum J. H.; Froemming A. T.; Khoor A.; Mira-Avendano I.; Patel A.; Larsen B. T. Pathology of vaping-associated lung injury. N. Engl. J. Med. 2019, 381, 1780–1781. 10.1056/NEJMc1913069. PubMed DOI

Maddock S. D.; Cirulis M. M.; Callahan S. J.; Keenan L. M.; Pirozzi C. S.; Raman S. M.; Aberegg S. K. Pulmonary lipid-laden macrophages and vaping. N. Engl. J. Med. 2019, 381, 1488–1489. 10.1056/NEJMc1912038. PubMed DOI

Massey J. B.; She H. S.; Pownall H. J. Interaction of vitamin E with saturated phospholipid bilayers. Biochem. Biophys. Res. Commun. 1982, 106, 842–847. 10.1016/0006-291X(82)91787-9. PubMed DOI

Lee H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med. Hypotheses 2020, 144, 110182.10.1016/j.mehy.2020.110182. PubMed DOI PMC

Przybyla R. J.; Wright J.; Parthiban R.; Nazemidashtarjandi S.; Kaya S.; Farnoud A. M. Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant. Respir. Res. 2017, 18, 193–213. 10.1186/s12931-017-0676-9. PubMed DOI PMC

Van Bavel N.; Lai P.; Amrein M.; Prenner E. J. Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives. Colloids Surf., B 2023, 222, 113132.10.1016/j.colsurfb.2023.113132. PubMed DOI

Boudi F. B.; Patel S.; Boudi A.; Chan C. Vitamin E acetate as a plausible cause of acute vaping-related illness. Cureus 2019, 11, e635010.7759/cureus.6350. PubMed DOI PMC

Lozier M. J.; Wallace B.; Anderson K.; Ellington S.; Jones C. M.; Rose D.; Baldwin G.; King B. A.; Briss P.; Mikosz C. A.; Austin C.; et al. Update: demographic, product, and substance-use characteristics of hospitalized patients in a Nationwide outbreak of E-cigarette, or Vaping, product use–associated lung injuries-United States, December 2019. Morb. Mortal. Wkly. Rep. 2019, 68, 1142–1148. 10.15585/mmwr.mm6849e1. PubMed DOI PMC

Traboulsi H.; Cherian M.; Abou Rjeili M.; Preteroti M.; Bourbeau J.; Smith B. M.; Eidelman D. H.; Baglole C. J. Inhalation toxicology of vaping products and implications for pulmonary health. Int. J. Mol. Sci. 2020, 21, 3495.10.3390/ijms21103495. PubMed DOI PMC

Pérez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid–protein interactions. Biochim. Biophys. Acta 2008, 1778, 1676–1695. 10.1016/j.bbamem.2008.05.003. PubMed DOI

Possmayer F.; Hall S. B.; Haller T.; Petersen N. O.; Zuo Y. Y.; Bernardino de la Serna J.; Postle A. D.; Veldhuizen R. A.; Orgeig S. Recent advances in alveolar biology: Some new looks at the alveolar interface. Respir. Physiol. Neurobiol. 2010, 173, S55–S64. 10.1016/j.resp.2010.02.014. PubMed DOI

Steimle K. L.; Mogensen M. L.; Karbing D. S.; Bernardino de la Serna J.; Andreassen S. A model of ventilation of the healthy human lung. Comput. Methods Progr. Biomed. 2011, 101, 144–155. 10.1016/j.cmpb.2010.06.017. PubMed DOI

Andreassen S.; Steimle K. L.; Mogensen M. L.; Serna J. B. d. l.; Rees S.; Karbing D. S. The effect of tissue elastic properties and surfactant on alveolar stability. J. Appl. Physiol. 2010, 109, 1369–1377. 10.1152/japplphysiol.00844.2009. PubMed DOI PMC

Cardinal-Fernández P.; Lorente J. A.; Ballén-Barragán A.; Matute-Bello G. Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Ann. Am. Thorac. Soc. 2017, 14, 844–850. 10.1513/AnnalsATS.201609-728PS. PubMed DOI

Hage R.; Schuurmans M. M. Suggested management of e-cigarette or vaping product use associated lung injury (EVALI). J. Thorac. Dis. 2020, 12, 3460–3468. 10.21037/jtd.2020.03.101. PubMed DOI PMC

Bernardino de la Serna J.; Vargas R.; Picardi V.; Cruz A.; Arranz R.; Valpuesta J. M.; Mateu L.; Pérez-Gil J. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discuss. 2013, 161, 535–548. 10.1039/C2FD20096A. PubMed DOI

Veldhuizen E. J.; Haagsman H. P. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim. Biophys. Acta 2000, 1467, 255–270. 10.1016/S0005-2736(00)00256-X. PubMed DOI

Parra E.; Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. 10.1016/j.chemphyslip.2014.09.002. PubMed DOI

Brewer J.; de la Serna J. B.; Wagner K.; Bagatolli L. A. Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochim. Biophys. Acta 2010, 1798, 1301–1308. 10.1016/j.bbamem.2010.02.024. PubMed DOI

Bernardino de la Serna J.; Hansen S.; Berzina Z.; Simonsen A. C.; Hannibal-Bach H. K.; Knudsen J.; Ejsing C. S.; Bagatolli L. A. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. Biochim. Biophys. Acta 2013, 1828, 2450–2459. 10.1016/j.bbamem.2013.07.008. PubMed DOI

Castillo-Sánchez J. C.; Cruz A.; Pérez-Gil J. Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch. Biochem. Biophys. 2021, 703, 108850.10.1016/j.abb.2021.108850. PubMed DOI

Olmeda B.; Villén L.; Cruz A.; Orellana G.; Perez-Gil J. Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochim. Biophys. Acta 2010, 1798, 1281–1284. 10.1016/j.bbamem.2010.03.008. PubMed DOI

Bernardino de la Serna J.; Perez-Gil J.; Simonsen A. C.; Bagatolli L. A. Cholesterol rules: Direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 2004, 279, 40715–40722. 10.1074/jbc.M404648200. PubMed DOI

de la Serna J. B.; Orädd G.; Bagatolli L. A.; Simonsen A. C.; Marsh D.; Lindblom G.; Perez-Gil J. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys. J. 2009, 97, 1381–1389. 10.1016/j.bpj.2009.06.040. PubMed DOI PMC

Schürch D.; Ospina O. L.; Cruz A.; Pérez-Gil J. Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films. Biophys. J. 2010, 99, 3290–3299. 10.1016/j.bpj.2010.09.039. PubMed DOI PMC

Gómez-Gil L.; Schürch D.; Goormaghtigh E.; Pérez-Gil J. Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. Biophys. J. 2009, 97, 2736–2745. 10.1016/j.bpj.2009.08.045. PubMed DOI PMC

Han S.; Mallampalli R. K. The role of surfactant in lung disease and host defense against pulmonary infections. Ann. Am. Thorac. Soc. 2015, 12, 765–774. 10.1513/AnnalsATS.201411-507FR. PubMed DOI PMC

Davies M. J.; Birkett J. W.; Kotwa M.; Tomlinson L.; Woldetinsae R. The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions. Surf. Interface Anal. 2017, 49, 654–665. 10.1002/sia.6205. DOI

Sosnowski T. R.; Jabłczyńska K.; Odziomek M.; Schlage W. K.; Kuczaj A. K. Physicochemical studies of direct interactions between lung surfactant and components of electronic cigarettes liquid mixtures. Inhalation Toxicol. 2018, 30, 159–168. 10.1080/08958378.2018.1478916. PubMed DOI

Graham E.; McCaig L.; Shui-Kei Lau G.; Tejura A.; Cao A.; Zuo Y. Y.; Veldhuizen R. E-cigarette aerosol exposure of pulmonary surfactant impairs its surface tension reducing function. PLoS One 2022, 17, e027247510.1371/journal.pone.0272475. PubMed DOI PMC

Kosmider L.; Sobczak A.; Prokopowicz A.; Kurek J.; Zaciera M.; Knysak J.; Smith D.; Goniewicz M. L. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde. Thorax 2016, 71, 376–377. 10.1136/thoraxjnl-2015-207895. PubMed DOI PMC

Erythropel H. C.; Jabba S. V.; DeWinter T. M.; Mendizabal M.; Anastas P. T.; Jordt S. E.; Zimmerman J. B. Formation of flavorant–propylene glycol adducts with novel toxicological properties in chemically unstable e-cigarette liquids. Nicotine Tob. Res. 2019, 21, 1248–1258. 10.1093/ntr/nty192. PubMed DOI PMC

Behar R. Z.; Luo W.; McWhirter K. J.; Pankow J. F.; Talbot P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 2018, 8, 8288.10.1038/s41598-018-25575-6. PubMed DOI PMC

Ajaikumar S.; Pandurangan A. Reaction of benzaldehyde with various aliphatic glycols in the presence of hydrophobic Al-MCM-41: A convenient synthesis of cyclic acetals. J. Mol. Catal. A: Chem. 2008, 290, 35–43. 10.1016/j.molcata.2008.04.008. DOI

Liekkinen J.; de Santos Moreno B.; Paananen R. O.; Vattulainen I.; Monticelli L.; Bernardino de la Serna J.; Javanainen M. Understanding the functional properties of lipid heterogeneity in pulmonary surfactant monolayers at the atomistic level. Front. Cell Dev. Biol. 2020, 8, 581016.10.3389/fcell.2020.581016. PubMed DOI PMC

Liekkinen J.; Olzynska A.; Cwiklik L.; Bernardino de la Serna J.; Vattulainen I.; Javanainen M. Surfactant proteins SP-B and SP-C in pulmonary surfactant monolayers: Physical properties controlled by specific protein–lipid interactions. Langmuir 2023, 39, 4338–4350. 10.1021/acs.langmuir.2c03349. PubMed DOI PMC

Schulz A.; Pagerols Raluy L.; Kolman J. P.; Königs I.; Trochimiuk M.; Appl B.; Reinshagen K.; Boettcher M.; Trah J. The Inhibitory Effect of Curosurf and Alveofact on the Formation of Neutrophil Extracellular Traps. Front. Immunol. 2021, 11, 582895.10.3389/fimmu.2020.582895. PubMed DOI PMC

Agudelo C. W.; Samaha G.; Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis. 2020, 19, 122–221. 10.1186/s12944-020-01278-8. PubMed DOI PMC

Yu L. M.; Lu J. J.; Chan Y. W.; Ng A.; Zhang L.; Hoorfar M.; Policova Z.; Grundke K.; Neumann A. W. Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems. J. Appl. Physiol. 2004, 97, 704–715. 10.1152/japplphysiol.00089.2003. PubMed DOI

Zuo Y. Y.; Veldhuizen R. A.; Neumann A. W.; Petersen N. O.; Possmayer F. Current perspectives in pulmonary surfactant—inhibition, enhancement and evaluation. Biochim. Biophys. Acta 2008, 1778, 1947–1977. 10.1016/j.bbamem.2008.03.021. PubMed DOI

Autilio C.; Pérez-Gil J. Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F443–F451. 10.1136/archdischild-2018-315413. PubMed DOI

Kurniawan J.; Ventrici de Souza J. F.; Dang A. T.; Liu G.-y.; Kuhl T. L. Preparation and characterization of solid-supported lipid bilayers formed by Langmuir–Blodgett deposition: a tutorial. Langmuir 2018, 34, 15622–15639. 10.1021/acs.langmuir.8b03504. PubMed DOI

Nelson J.; Diehl I. I.; Palfreeman A. F.; Gibby J.; Bell J. D. Ultraslow dynamics of a complex amphiphile within the phospholipid bilayer: Effect of the lipid pre-transition. Biochim. Biophys. Acta 2017, 1859, 2068–2075. 10.1016/j.bbamem.2017.07.012. PubMed DOI

Crane J. M.; Putz G.; Hall S. B. Persistence of Phase Coexistence in Disaturated Phosphatidylcholine Monolayers at High Surface Pressures. Biophys. J. 1999, 77, 3134–3143. 10.1016/S0006-3495(99)77143-2. PubMed DOI PMC

Mottola M.; Caruso B.; Perillo M. A. Langmuir films at the oil/water interface revisited. Sci. Rep. 2019, 9, 2259.10.1038/s41598-019-38674-9. PubMed DOI PMC

Tempra C.; Ollila O. H. S.; Javanainen M. Accurate simulations of lipid monolayers require a water model with correct surface tension. J. Chem. Theory Comput. 2022, 18, 1862–1869. 10.1021/acs.jctc.1c00951. PubMed DOI PMC

Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. H. S. Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI

Ma G.; Allen H. C. Condensing effect of palmitic acid on DPPC in mixed Langmuir monolayers. Langmuir 2007, 23, 589–597. 10.1021/la061870i. PubMed DOI

Keating E.; Zuo Y. Y.; Tadayyon S. M.; Petersen N. O.; Possmayer F.; Veldhuizen R. A. A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochim. Biophys. Acta 2012, 1818, 1225–1234. 10.1016/j.bbamem.2011.12.007. PubMed DOI PMC

Schüer J. J.; Arndt A.; Wölk C.; Pinnapireddy S. R.; Bakowsky U. Establishment of a synthetic in vitro lung surfactant model for particle interaction studies on a Langmuir film balance. Langmuir 2020, 36, 4808–4819. 10.1021/acs.langmuir.9b03712. PubMed DOI

Rüdiger M.; Tölle A.; Meier W.; Rüstow B. Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 288, L379–L383. 10.1152/ajplung.00176.2004. PubMed DOI

Bahl V.; Lin S.; Xu N.; Davis B.; Wang Y.-h.; Talbot P. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reprod. Toxicol. 2012, 34, 529–537. 10.1016/j.reprotox.2012.08.001. PubMed DOI

Guillot L.; Nathan N.; Tabary O.; Thouvenin G.; Le Rouzic P.; Corvol H.; Amselem S.; Clement A. Alveolar epithelial cells: Master regulators of lung homeostasis. Int. J. Biochem. Cell Biol. 2013, 45, 2568–2573. 10.1016/j.biocel.2013.08.009. PubMed DOI

Eddingsaas N.; Pagano T.; Cummings C.; Rahman I.; Robinson R.; Hensel E. Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. Int. J. Environ. Res. Publ. Health 2018, 15, 323.10.3390/ijerph15020323. PubMed DOI PMC

Javanainen M.; Monticelli L.; de la Serna J. B.; Vattulainen I. Free volume theory applied to lateral diffusion in Langmuir monolayers: Atomistic simulations for a protein-free model of lung surfactant. Langmuir 2010, 26, 15436–15444. 10.1021/la102454m. PubMed DOI

Schürch S.; Bachofen H.; Goerke J.; Green F. Surface properties of rat pulmonary surfactant studied with the captive bubble method: Adsorption, hysteresis, stability. Biochim. Biophys. Acta 1992, 1103, 127–136. 10.1016/0005-2736(92)90066-U. PubMed DOI

Pallas N.; Harrison Y. An automated drop shape apparatus and the surface tension of pure water. Colloids Surf. 1990, 43, 169–194. 10.1016/0166-6622(90)80287-E. DOI

Saad S. M.; Policova Z.; Acosta E. J.; Neumann A. W. Effect of surfactant concentration, compression ratio and compression rate on the surface activity and dynamic properties of a lung surfactant. Biochim. Biophys. Acta 2012, 1818, 103–116. 10.1016/j.bbamem.2011.10.004. PubMed DOI

Caschera F.; de la Serna J. B.; Loffler P.; Rasmussen T. E.; Hanczyc M.; Bagatolli L.; Monnard P.-A. Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles. Langmuir 2011, 27, 14078–14090. 10.1021/la203057b. PubMed DOI

Duncan S. L.; Larson R. G. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys. J. 2008, 94, 2965–2986. 10.1529/biophysj.107.114215. PubMed DOI PMC

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr; Pastor R. W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

Lim J. B.; Rogaski B.; Klauda J. B. Update of the cholesterol force field parameters in CHARMM. J. Phys. Chem. B 2012, 116, 203–210. 10.1021/jp207925m. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building water models: A different approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Halgren T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. 10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p. DOI

Zoete V.; Cuendet M. A.; Grosdidier A.; Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 2011, 32, 2359–2368. 10.1002/jcc.21816. PubMed DOI

Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...