• This record comes from PubMed

Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with Dry Eye Syndrome

. 2019 Jul 18 ; 10 (14) : 3893-3898. [epub] 20190701

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Dry eye syndrome (DES), one of the most common ophthalmological diseases, is typically caused by excessive evaporation of tear fluid from the ocular surface. Excessive evaporation is linked to impaired function of the tear film lipid layer (TFLL) that covers the aqueous tear film. The principles of the evaporation resistance of the TFLL have remained unknown, however. We combined atomistic simulations with Brewster angle microscopy and surface potential experiments to explore the organization and evaporation resistance of films composed of wax esters, one of the main components of the TFLL. The results provide evidence that the evaporation resistance of the TFLL is based on crystalline-state layers of wax esters and that the evaporation rate is determined by defects in the TFLL and its coverage on the ocular surface. On the basis of the results, uncovering the nonequilibrium spreading and crystallization of TFLL films has potential to reveal new means of treating DES.

See more in PubMed

Stapleton F.; Alves M.; Bunya V. Y.; Jalbert I.; Lekhanont K.; Malet F.; Na K.; Schaumberg D.; Uchino M.; Vehof J.; Viso E.; Vitale S.; Jones L. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. 10.1016/j.jtos.2017.05.003. PubMed DOI

Bron A. J.; Tiffany J. M.; Gouveia S. M.; Yokoi N.; Voon L. W. Functional Aspects of the Tear Film Lipid Layer. Exp. Eye Res. 2004, 78, 347–360. 10.1016/j.exer.2003.09.019. PubMed DOI

Lemp M. A.; Crews L. A.; Bron A. J.; Foulks G. N.; Sullivan B. D. Distribution of Aqueous-deficient and Evaporative Dry Eye in a Clinic-Based Patient Cohort: A Retrospective Study. Cornea 2012, 31, 472–478. 10.1097/ICO.0b013e318225415a. PubMed DOI

Barnes G. T. The Potential for Monolayers to Reduce the Evaporation of Water from Large Water Storages. Agric. Water Manage. 2008, 95, 339–353. 10.1016/j.agwat.2007.12.003. DOI

Brown S. H.; Kunnen C. M.; Duchoslav E.; Dolla N. K.; Kelso M. J.; Papas E. B.; Lazon de la Jara P.; Willcox M. D.; Blanksby S. J.; Mitchell T. W. A Comparison of Patient Matched Meibum and Tear Lipidomes. Invest. Ophthalmol. Visual Sci. 2013, 54, 7417–7424. 10.1167/iovs.13-12916. PubMed DOI

Lam S. M.; Tong L.; Duan X.; Petznick A.; Wenk M. R.; Shui G. Extensive Characterization of Human Tear Fluid Collected Using Different Techniques Unravels the Presence of Novel Lipid Amphiphiles. J. Lipid Res. 2014, 55, 289–298. 10.1194/jlr.M044826. PubMed DOI PMC

Butovich I. A. Tear Film Lipids. Exp. Eye Res. 2013, 117, 4–27. 10.1016/j.exer.2013.05.010. PubMed DOI PMC

Rantamäki A. H.; Javanainen M.; Vattulainen I.; Holopainen J. M. Do Lipids Retard the Evaporation of the Tear Fluid?. Invest. Ophthalmol. Visual Sci. 2012, 53, 6442–6447. 10.1167/iovs.12-10487. PubMed DOI

Rantamäki A. H.; Wiedmer S. K.; Holopainen J. M. Melting Points - The Key to the Anti-evaporative Effect of the Tear Film Wax Esters. Invest. Ophthalmol. Visual Sci. 2013, 54, 5211–5217. 10.1167/iovs.13-12408. PubMed DOI

Paananen R. O.; Rantamäki A. H.; Holopainen J. M. Antievaporative Mechanism of Wax Esters: Implications for the Function of Tear Fluid. Langmuir 2014, 30, 5897–5902. 10.1021/la501678t. PubMed DOI

Leiske D. L.; Miller C. E.; Rosenfeld L.; Cerretani C.; Ayzner A.; Lin B.; Meron M.; Senchyna M.; Ketelson H. A.; Meadows D.; et al. Molecular Structure of Interfacial Human Meibum Films. Langmuir 2012, 28, 11858–11865. 10.1021/la301321r. PubMed DOI

Rosenfeld L.; Cerretani C.; Leiske D. L.; Toney M. F.; Radke C. J.; Fuller G. G. Structural and Rheological Properties of Meibomian Lipid. Invest. Ophthalmol. Visual Sci. 2013, 54, 2720–2732. 10.1167/iovs.12-10987. PubMed DOI

Sledge S. M.; Khimji H.; Borchman D.; Oliver A. L.; Michael H.; Dennis E. K.; Gerlach D.; Bhola R.; Stephen E. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films. Ocul. Surf. 2016, 14, 447–459. 10.1016/j.jtos.2016.06.002. PubMed DOI PMC

Lam S. M.; Tong L.; Reux B.; Duan X.; Petznick A.; Yong S. S.; Khee C. B. S.; Lear M. J.; Wenk M. R.; Shui G. Lipidomic Analysis of Human Tear Fluid Reveals Structure-specific Lipid Alterations in Dry Eye Syndrome. J. Lipid Res. 2014, 55, 299–306. 10.1194/jlr.P041780. PubMed DOI PMC

Enkavi G.; Javanainen M.; Kulig W.; Róg T.; Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge to Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119, 5607–5774. 10.1021/acs.chemrev.8b00538. PubMed DOI PMC

Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OPLS All-atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. 10.1021/ja9621760. DOI

Siu S. W.; Pluhackova K.; Böckmann R. A. Optimization of the OPLS-AA Force Field for Long Hydrocarbons. J. Chem. Theory Comput. 2012, 8, 1459–1470. 10.1021/ct200908r. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. H. S. Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI

Kohlhaas R. Röntgenographische Untersuchung von definierten Einkristallen des Palmitinsäure-Cetylesters. Z. Kristallogr. Cryst. Mater. 1938, 98, 418–438. 10.1524/zkri.1938.98.1.418. DOI

Dorset D. L. Electronographic Crystal-structure Analysis of Cetyl Palmitate. Bioorg. Khim. 1976, 2, 781–788.

Lutz D. A.; Eddy C. R.; Hunter J. J. X-ray Diffraction Study of Some Normal Alkyl Esters of Long-Chain Acids. Lipids 1967, 2, 204–207. 10.1007/BF02532556. PubMed DOI

Alexander A. E.; Schulman J. H. Orientation in Films of Long-chain Esters. Proc. R. Soc. A 1937, 161, 115.10.1098/rspa.1937.0136. DOI

Diamond J. M.; Katz Y. Interpretation of Nonelectrolyte Partition Coefficients Between Dimyristoyl Lecithin and Water. J. Membr. Biol. 1974, 17, 121–151. 10.1007/BF01870176. PubMed DOI

Schatzberg P. Diffusion of Water Through Hydrocarbon Liquids. J. Polym. Sci., Part C: Polym. Symp. 1965, 10, 87–92. 10.1002/polc.5070100108. DOI

Aminabhavi T. M.; Bindu G. Densities, Viscosities, Refractive Indices, and Speeds of Sound of the Binary Mixtures of Bis(2-methoxyethyl) Ether with Nonane, Decane, Dodecane, Tetradecane, and Hexadecane at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1994, 39, 529–534. 10.1021/je00015a029. DOI

Johnson J. D.; Hinman C. W. Oils and Rubber from Arid Land Plants. Science 1980, 208, 460–464. 10.1126/science.208.4443.460. PubMed DOI

Börjesson A.; Erdtman E.; Ahlström P.; Berlin M.; Andersson T.; Bolton K. Molecular Modelling of Oxygen and Water Permeation in Polyethylene. Polymer 2013, 54, 2988–2998. 10.1016/j.polymer.2013.03.065. DOI

Barnes G. T. Permeation Through Monolayers. Colloids Surf., A 1997, 126, 149–158. 10.1016/S0927-7757(96)03926-X. DOI

Pu G.; Longo M. L.; Borden M. A. Effect of Microstructure on Molecular Oxygen Permeation Through Condensed Phospholipid Monolayers. J. Am. Chem. Soc. 2005, 127, 6524–6525. 10.1021/ja051103q. PubMed DOI

Cwiklik L. Tear Film Lipid Layer: A Molecular Level View. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2421–2430. 10.1016/j.bbamem.2016.02.020. PubMed DOI

Marrink S. J.; Tieleman D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801–6822. 10.1039/c3cs60093a. PubMed DOI

Leiske D. L.; Leiske C. I.; Leiske D. R.; Toney M. F.; Senchyna M.; Ketelson H. A.; Meadows D. L.; Fuller G. G. Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum. Biophys. J. 2012, 102, 369–376. 10.1016/j.bpj.2011.12.017. PubMed DOI PMC

Butovich I. A.; Lu H.; McMahon A.; Ketelson H.; Senchyna M.; Meadows D.; Campbell E.; Molai M.; Linsenbardt E. Biophysical and Morphological Evaluation of Human Normal and Dry Eye Meibum Using Hot Stage Polarized Light Microscopy. Invest. Ophthalmol. Visual Sci. 2014, 55, 87–101. 10.1167/iovs.13-13355. PubMed DOI PMC

Tan J. H.; Ng E. Y. K.; Acharya U. R. Evaluation of Topographical Variation in Ocular Surface Temperature by Functional Infrared Thermography. Infrared Phys. Technol. 2011, 54, 469–477. 10.1016/j.infrared.2011.07.010. DOI

Chen J.; Nichols K. K.; Wilson L.; Barnes S.; Nichols J. J. Untargeted Lipidomic Analysis of Human Tears: A New Approach for Quantification of O-acyl-omega Hydroxy Fatty Acids. Ocul. Surf. 2019, 17, 347–355. 10.1016/j.jtos.2019.02.004. PubMed DOI PMC

King-Smith P. E.; Hinel E. A.; Nichols J. J. Application of a Novel Interferometric Method to Investigate the Relation between Lipid Layer Thickness and Tear Film Thinning. Invest. Ophthalmol. Visual Sci. 2010, 51, 2418–2423. 10.1167/iovs.09-4387. PubMed DOI PMC

Craig J. P.; Tomlinson A. Importance of the Lipid Layer in Human Tear Film Stability and Evaporation. Optom. Vis. Sci. 1997, 74, 8–13. 10.1097/00006324-199701000-00014. PubMed DOI

Peng C.; Cerretani C.; Braun R. J.; Radke C. J. Evaporation-driven Instability of the Precorneal Tear Film. Adv. Colloid Interface Sci. 2014, 206, 250–264. 10.1016/j.cis.2013.06.001. PubMed DOI

Mills R. Self-diffusion in Normal and Heavy Water in the Range 1–45 deg. J. Phys. Chem. 1973, 77, 685–688. 10.1021/j100624a025. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...