Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with Dry Eye Syndrome
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
31260321
PubMed Central
PMC6643162
DOI
10.1021/acs.jpclett.9b01187
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Dry eye syndrome (DES), one of the most common ophthalmological diseases, is typically caused by excessive evaporation of tear fluid from the ocular surface. Excessive evaporation is linked to impaired function of the tear film lipid layer (TFLL) that covers the aqueous tear film. The principles of the evaporation resistance of the TFLL have remained unknown, however. We combined atomistic simulations with Brewster angle microscopy and surface potential experiments to explore the organization and evaporation resistance of films composed of wax esters, one of the main components of the TFLL. The results provide evidence that the evaporation resistance of the TFLL is based on crystalline-state layers of wax esters and that the evaporation rate is determined by defects in the TFLL and its coverage on the ocular surface. On the basis of the results, uncovering the nonequilibrium spreading and crystallization of TFLL films has potential to reveal new means of treating DES.
Computational Physics Laboratory Tampere University FI 33100 Tampere Finland
Department of Physics University of Helsinki FI 00014 Helsinki Finland
See more in PubMed
Stapleton F.; Alves M.; Bunya V. Y.; Jalbert I.; Lekhanont K.; Malet F.; Na K.; Schaumberg D.; Uchino M.; Vehof J.; Viso E.; Vitale S.; Jones L. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. 10.1016/j.jtos.2017.05.003. PubMed DOI
Bron A. J.; Tiffany J. M.; Gouveia S. M.; Yokoi N.; Voon L. W. Functional Aspects of the Tear Film Lipid Layer. Exp. Eye Res. 2004, 78, 347–360. 10.1016/j.exer.2003.09.019. PubMed DOI
Lemp M. A.; Crews L. A.; Bron A. J.; Foulks G. N.; Sullivan B. D. Distribution of Aqueous-deficient and Evaporative Dry Eye in a Clinic-Based Patient Cohort: A Retrospective Study. Cornea 2012, 31, 472–478. 10.1097/ICO.0b013e318225415a. PubMed DOI
Barnes G. T. The Potential for Monolayers to Reduce the Evaporation of Water from Large Water Storages. Agric. Water Manage. 2008, 95, 339–353. 10.1016/j.agwat.2007.12.003. DOI
Brown S. H.; Kunnen C. M.; Duchoslav E.; Dolla N. K.; Kelso M. J.; Papas E. B.; Lazon de la Jara P.; Willcox M. D.; Blanksby S. J.; Mitchell T. W. A Comparison of Patient Matched Meibum and Tear Lipidomes. Invest. Ophthalmol. Visual Sci. 2013, 54, 7417–7424. 10.1167/iovs.13-12916. PubMed DOI
Lam S. M.; Tong L.; Duan X.; Petznick A.; Wenk M. R.; Shui G. Extensive Characterization of Human Tear Fluid Collected Using Different Techniques Unravels the Presence of Novel Lipid Amphiphiles. J. Lipid Res. 2014, 55, 289–298. 10.1194/jlr.M044826. PubMed DOI PMC
Butovich I. A. Tear Film Lipids. Exp. Eye Res. 2013, 117, 4–27. 10.1016/j.exer.2013.05.010. PubMed DOI PMC
Rantamäki A. H.; Javanainen M.; Vattulainen I.; Holopainen J. M. Do Lipids Retard the Evaporation of the Tear Fluid?. Invest. Ophthalmol. Visual Sci. 2012, 53, 6442–6447. 10.1167/iovs.12-10487. PubMed DOI
Rantamäki A. H.; Wiedmer S. K.; Holopainen J. M. Melting Points - The Key to the Anti-evaporative Effect of the Tear Film Wax Esters. Invest. Ophthalmol. Visual Sci. 2013, 54, 5211–5217. 10.1167/iovs.13-12408. PubMed DOI
Paananen R. O.; Rantamäki A. H.; Holopainen J. M. Antievaporative Mechanism of Wax Esters: Implications for the Function of Tear Fluid. Langmuir 2014, 30, 5897–5902. 10.1021/la501678t. PubMed DOI
Leiske D. L.; Miller C. E.; Rosenfeld L.; Cerretani C.; Ayzner A.; Lin B.; Meron M.; Senchyna M.; Ketelson H. A.; Meadows D.; et al. Molecular Structure of Interfacial Human Meibum Films. Langmuir 2012, 28, 11858–11865. 10.1021/la301321r. PubMed DOI
Rosenfeld L.; Cerretani C.; Leiske D. L.; Toney M. F.; Radke C. J.; Fuller G. G. Structural and Rheological Properties of Meibomian Lipid. Invest. Ophthalmol. Visual Sci. 2013, 54, 2720–2732. 10.1167/iovs.12-10987. PubMed DOI
Sledge S. M.; Khimji H.; Borchman D.; Oliver A. L.; Michael H.; Dennis E. K.; Gerlach D.; Bhola R.; Stephen E. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films. Ocul. Surf. 2016, 14, 447–459. 10.1016/j.jtos.2016.06.002. PubMed DOI PMC
Lam S. M.; Tong L.; Reux B.; Duan X.; Petznick A.; Yong S. S.; Khee C. B. S.; Lear M. J.; Wenk M. R.; Shui G. Lipidomic Analysis of Human Tear Fluid Reveals Structure-specific Lipid Alterations in Dry Eye Syndrome. J. Lipid Res. 2014, 55, 299–306. 10.1194/jlr.P041780. PubMed DOI PMC
Enkavi G.; Javanainen M.; Kulig W.; Róg T.; Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge to Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019, 119, 5607–5774. 10.1021/acs.chemrev.8b00538. PubMed DOI PMC
Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OPLS All-atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. 10.1021/ja9621760. DOI
Siu S. W.; Pluhackova K.; Böckmann R. A. Optimization of the OPLS-AA Force Field for Long Hydrocarbons. J. Chem. Theory Comput. 2012, 8, 1459–1470. 10.1021/ct200908r. PubMed DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Javanainen M.; Lamberg A.; Cwiklik L.; Vattulainen I.; Ollila O. H. S. Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir 2018, 34, 2565–2572. 10.1021/acs.langmuir.7b02855. PubMed DOI
Kohlhaas R. Röntgenographische Untersuchung von definierten Einkristallen des Palmitinsäure-Cetylesters. Z. Kristallogr. Cryst. Mater. 1938, 98, 418–438. 10.1524/zkri.1938.98.1.418. DOI
Dorset D. L. Electronographic Crystal-structure Analysis of Cetyl Palmitate. Bioorg. Khim. 1976, 2, 781–788.
Lutz D. A.; Eddy C. R.; Hunter J. J. X-ray Diffraction Study of Some Normal Alkyl Esters of Long-Chain Acids. Lipids 1967, 2, 204–207. 10.1007/BF02532556. PubMed DOI
Alexander A. E.; Schulman J. H. Orientation in Films of Long-chain Esters. Proc. R. Soc. A 1937, 161, 115.10.1098/rspa.1937.0136. DOI
Diamond J. M.; Katz Y. Interpretation of Nonelectrolyte Partition Coefficients Between Dimyristoyl Lecithin and Water. J. Membr. Biol. 1974, 17, 121–151. 10.1007/BF01870176. PubMed DOI
Schatzberg P. Diffusion of Water Through Hydrocarbon Liquids. J. Polym. Sci., Part C: Polym. Symp. 1965, 10, 87–92. 10.1002/polc.5070100108. DOI
Aminabhavi T. M.; Bindu G. Densities, Viscosities, Refractive Indices, and Speeds of Sound of the Binary Mixtures of Bis(2-methoxyethyl) Ether with Nonane, Decane, Dodecane, Tetradecane, and Hexadecane at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1994, 39, 529–534. 10.1021/je00015a029. DOI
Johnson J. D.; Hinman C. W. Oils and Rubber from Arid Land Plants. Science 1980, 208, 460–464. 10.1126/science.208.4443.460. PubMed DOI
Börjesson A.; Erdtman E.; Ahlström P.; Berlin M.; Andersson T.; Bolton K. Molecular Modelling of Oxygen and Water Permeation in Polyethylene. Polymer 2013, 54, 2988–2998. 10.1016/j.polymer.2013.03.065. DOI
Barnes G. T. Permeation Through Monolayers. Colloids Surf., A 1997, 126, 149–158. 10.1016/S0927-7757(96)03926-X. DOI
Pu G.; Longo M. L.; Borden M. A. Effect of Microstructure on Molecular Oxygen Permeation Through Condensed Phospholipid Monolayers. J. Am. Chem. Soc. 2005, 127, 6524–6525. 10.1021/ja051103q. PubMed DOI
Cwiklik L. Tear Film Lipid Layer: A Molecular Level View. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2421–2430. 10.1016/j.bbamem.2016.02.020. PubMed DOI
Marrink S. J.; Tieleman D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801–6822. 10.1039/c3cs60093a. PubMed DOI
Leiske D. L.; Leiske C. I.; Leiske D. R.; Toney M. F.; Senchyna M.; Ketelson H. A.; Meadows D. L.; Fuller G. G. Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum. Biophys. J. 2012, 102, 369–376. 10.1016/j.bpj.2011.12.017. PubMed DOI PMC
Butovich I. A.; Lu H.; McMahon A.; Ketelson H.; Senchyna M.; Meadows D.; Campbell E.; Molai M.; Linsenbardt E. Biophysical and Morphological Evaluation of Human Normal and Dry Eye Meibum Using Hot Stage Polarized Light Microscopy. Invest. Ophthalmol. Visual Sci. 2014, 55, 87–101. 10.1167/iovs.13-13355. PubMed DOI PMC
Tan J. H.; Ng E. Y. K.; Acharya U. R. Evaluation of Topographical Variation in Ocular Surface Temperature by Functional Infrared Thermography. Infrared Phys. Technol. 2011, 54, 469–477. 10.1016/j.infrared.2011.07.010. DOI
Chen J.; Nichols K. K.; Wilson L.; Barnes S.; Nichols J. J. Untargeted Lipidomic Analysis of Human Tears: A New Approach for Quantification of O-acyl-omega Hydroxy Fatty Acids. Ocul. Surf. 2019, 17, 347–355. 10.1016/j.jtos.2019.02.004. PubMed DOI PMC
King-Smith P. E.; Hinel E. A.; Nichols J. J. Application of a Novel Interferometric Method to Investigate the Relation between Lipid Layer Thickness and Tear Film Thinning. Invest. Ophthalmol. Visual Sci. 2010, 51, 2418–2423. 10.1167/iovs.09-4387. PubMed DOI PMC
Craig J. P.; Tomlinson A. Importance of the Lipid Layer in Human Tear Film Stability and Evaporation. Optom. Vis. Sci. 1997, 74, 8–13. 10.1097/00006324-199701000-00014. PubMed DOI
Peng C.; Cerretani C.; Braun R. J.; Radke C. J. Evaporation-driven Instability of the Precorneal Tear Film. Adv. Colloid Interface Sci. 2014, 206, 250–264. 10.1016/j.cis.2013.06.001. PubMed DOI
Mills R. Self-diffusion in Normal and Heavy Water in the Range 1–45 deg. J. Phys. Chem. 1973, 77, 685–688. 10.1021/j100624a025. DOI