Molecular interpretation of fluorescence solvent relaxation of Patman and 2H NMR experiments in phosphatidylcholine bilayers
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17467676
DOI
10.1016/j.chemphyslip.2007.03.004
PII: S0009-3084(07)00047-3
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva chemie MeSH
- fosfatidylcholiny chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- protony MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- fosfatidylcholiny MeSH
- lipidové dvojvrstvy MeSH
- protony MeSH
- rozpouštědla MeSH
The analysis of time-dependent fluorescence shifts of the bilayer probe 6-hexadecanoyl-2-(((2-(trimethylammonium)ethyl)methyl)amino)naphthalene chloride (Patman) offers valuable information on the hydration and dynamics of phospholipid headgroups. Quenching studies on vesicles composed of four phosphatidylcholines with different hydrocarbon chains (18:1c9/18:1c9, DOPC; 16:0/18:1c9, POPC; 18:1c9/16:0, OPPC; 18:1c6/18:1c6, PCDelta6) show that the chromophore of Patman is defined located at the level of the sn-1 ester-group in the phospholipid, which is invariant to the hydrocarbon chain. The so-called solvent relaxation (SR) approach as well as solid-state 2H NMR reveals that DOPC and PCDelta6 are more hydrated than POPC and OPPC. A strong dependence of SR kinetics on the position of double bond in the investigated fatty acid chains was observed. Apparently, the closer the double bond is located to the hydrated sn-1 ester-group, the more mobile this group becomes. This work demonstrates that the SR approach can report mobility changes within phospholipid bilayers with a remarkable molecular resolution.
Citace poskytuje Crossref.org