NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33441774
PubMed Central
PMC7806638
DOI
10.1038/s41598-020-80224-1
PII: 10.1038/s41598-020-80224-1
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects MeSH
- HEK293 Cells MeSH
- Indoles pharmacology MeSH
- Nuclear Proteins genetics metabolism MeSH
- Leukemia drug therapy genetics metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Nucleophosmin MeSH
- Antineoplastic Agents pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Indoles MeSH
- Nuclear Proteins MeSH
- NPM1 protein, human MeSH Browser
- NSC 348884 MeSH Browser
- Nucleophosmin MeSH
- Antineoplastic Agents MeSH
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
See more in PubMed
Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 2002;4:529–533. doi: 10.1038/ncb814. PubMed DOI
Cordell JL, et al. Detection of normal and chimeric nucleophosmin in human cells. Blood. 1999;93:632–642. doi: 10.1182/blood.V93.2.632. PubMed DOI
Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56:379–390. doi: 10.1016/0092-8674(89)90241-9. PubMed DOI
Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene. 2002;21:6170–6174. doi: 10.1038/sj.onc.1205708. PubMed DOI
Lindström MS. NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem. Res. Int. 2011;2011:195209. doi: 10.1155/2011/195209. PubMed DOI PMC
Herrera JE, Savkur R, Olson MO. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res. 1995;23:3974–3979. doi: 10.1093/nar/23.19.3974. PubMed DOI PMC
Poletto M, Lirussi L, Wilson DM, Tell G. Nucleophosmin modulates stability, activity, and nucleolar accumulation of base excision repair proteins. Mol. Biol. Cell. 2014;25:1641–1652. doi: 10.1091/mbc.e13-12-0717. PubMed DOI PMC
Okuda M, et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103:127–140. doi: 10.1016/S0092-8674(00)00093-3. PubMed DOI
Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 2001;506:272–276. doi: 10.1016/S0014-5793(01)02939-8. PubMed DOI
Li J, Zhang X, Sejas DP, Bagby GC, Pang Q. Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J. Biol. Chem. 2004;279:41275–41279. doi: 10.1074/jbc.C400297200. PubMed DOI
Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat. Rev. Cancer. 2006;6:493–505. doi: 10.1038/nrc1885. PubMed DOI
Falini B, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 2005;352:254–266. doi: 10.1056/NEJMoa041974. PubMed DOI
Morris SW, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–1284. doi: 10.1126/science.8122112. PubMed DOI
Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87:882–886. doi: 10.1182/blood.V87.3.882.bloodjournal873882. PubMed DOI
Yoneda-Kato N, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene. 1996;12:265–275. PubMed
Campregher PV, et al. A novel mechanism of NPM1 cytoplasmic localization in acute myeloid leukemia: the recurrent gene fusion NPM1-HAUS1. Haematologica. 2016;101:287. doi: 10.3324/haematol.2015.137364. PubMed DOI PMC
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: consequences of anchor loss. Int. J. Biochem. Cell Biol. 2019;111:52–62. doi: 10.1016/j.biocel.2019.04.007. PubMed DOI
Borrow J, Dyer SA, Akiki S, Griffiths MJ. Molecular roulette: nucleophosmin mutations in AML are orchestrated through N-nucleotide addition by TdT. Blood. 2019;134:2291–2303. doi: 10.1182/blood.2019001240. PubMed DOI
Federici L, Falini B. Nucleophosmin mutations in acute myeloid leukemia: a tale of protein unfolding and mislocalization. Protein Sci. 2013;22:545–556. doi: 10.1002/pro.2240. PubMed DOI PMC
Falini B, et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood. 2006;107:4514–4523. doi: 10.1182/blood-2005-11-4745. PubMed DOI
Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109:874–885. doi: 10.1182/blood-2006-07-012252. PubMed DOI
Dohner K, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106:3740–3746. doi: 10.1182/blood-2005-05-2164. PubMed DOI
Schnittger S, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–3739. doi: 10.1182/blood-2005-06-2248. PubMed DOI
Verhaak RG, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106:3747–3754. doi: 10.1182/blood-2005-05-2168. PubMed DOI
Falini B, et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood. 2006;108:1999–2005. doi: 10.1182/blood-2006-03-007013. PubMed DOI
Kuzelova K, et al. Altered HLA class I profile associated with type A/D nucleophosmin mutation points to possible anti-nucleophosmin immune response in acute myeloid leukemia. PLoS ONE. 2015;10:e0127637. doi: 10.1371/journal.pone.0127637. PubMed DOI PMC
Kuželová K, et al. Association of HLA class I type with prevalence and outcome of patients with acute myeloid leukemia and mutated nucleophosmin. PLoS ONE. 2018;13:e0204290. doi: 10.1371/journal.pone.0204290. PubMed DOI PMC
Herrera JE, Correia JJ, Jones AE, Olson MO. Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23. Biochemistry. 1996;35:2668–2673. doi: 10.1021/bi9523320. PubMed DOI
Namboodiri VMH, Dutta S, Akey IV, Head JF, Akey CW. The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure. 2003;11:175–186. doi: 10.1016/S0969-2126(03)00007-8. PubMed DOI
Dutta S, et al. The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol. Cell. 2001;8:841–853. doi: 10.1016/S1097-2765(01)00354-9. PubMed DOI
Lee HH, et al. Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer–pentamer interface. Proteins. 2007;69:672–678. doi: 10.1002/prot.21504. PubMed DOI
Li Z, Boone D, Hann SR. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc. Natl. Acad. Sci. USA. 2008;105:18794–18799. doi: 10.1073/pnas.0806879105. PubMed DOI PMC
Itahana K, et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell. 2003;12:1151–1164. doi: 10.1016/S1097-2765(03)00431-3. PubMed DOI
Huang M, et al. Role of cysteine 288 in nucleophosmin cytoplasmic mutations: sensitization to toxicity induced by arsenic trioxide and bortezomib. Leukemia. 2013;27:1970–1980. doi: 10.1038/leu.2013.222. PubMed DOI
Bolli N, et al. A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia. 2009;23:501–509. doi: 10.1038/leu.2008.326. PubMed DOI
Brodska B, Kracmarova M, Holoubek A, Kuzelova K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS ONE. 2017;12:e0175175. doi: 10.1371/journal.pone.0175175. PubMed DOI PMC
Falini B, et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 2009;23:1731–1743. doi: 10.1038/leu.2009.124. PubMed DOI
den Besten W, Kuo ML, Williams RT, Sherr CJ. Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle. 2005;4:1593–1598. doi: 10.4161/cc.4.11.2174. PubMed DOI
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev. Anticancer Ther. 2009;9:1283–1294. doi: 10.1586/era.09.84. PubMed DOI
Ranganathan P, et al. XPO1 Inhibition using selinexor synergizes with chemotherapy in acute myeloid leukemia by targeting DNA repair and restoring topoisomerase IIα to the nucleus. Clin. Cancer Res. 2016;22:6142–6152. doi: 10.1158/1078-0432.CCR-15-2885. PubMed DOI PMC
Balusu R, et al. Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood. 2011;118:3096–3106. doi: 10.1182/blood-2010-09-309674. PubMed DOI PMC
Garzon R, et al. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood. 2017;129:3165–3174. doi: 10.1182/blood-2016-11-750158. PubMed DOI PMC
Gu X, et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J. Clin. Invest. 2018;128:4260–4279. doi: 10.1172/JCI97117. PubMed DOI PMC
Mitrea DM, et al. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc. Natl. Acad. Sci. USA. 2014;111:4466–4471. doi: 10.1073/pnas.1321007111. PubMed DOI PMC
Mitrea DM, Kriwacki RW. On the relationship status for Arf and NPM1—it's complicated. FEBS J. 2018;285:828–831. doi: 10.1111/febs.14407. PubMed DOI PMC
Mitrea DM, et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife. 2016 doi: 10.7554/eLife.13571. PubMed DOI PMC
Di Natale C, et al. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. Biochim. Biophys. Acta Proteins Proteom. 2019;1867:637–644. doi: 10.1016/j.bbapap.2019.01.010. PubMed DOI
Scognamiglio PL, et al. Destabilisation, aggregation, toxicity and cytosolic mislocalisation of nucleophosmin regions associated with acute myeloid leukemia. Oncotarget. 2016;7:59129–59143. doi: 10.18632/oncotarget.10991. PubMed DOI PMC
Šašinková M, Holoubek A, Otevřelová P, Kuželová K, Brodská B. AML-associated mutation of nucleophosmin compromises its interaction with nucleolin. Int. J. Biochem. Cell Biol. 2018;103:65–73. doi: 10.1016/j.biocel.2018.08.008. PubMed DOI
Qi W, et al. NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells. Oncogene. 2008;27:4210–4220. doi: 10.1038/onc.2008.54. PubMed DOI
Hu W, et al. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis. 2019;10:831. doi: 10.1038/s41419-019-2071-6. PubMed DOI PMC
Phi JH, et al. NPM1 as a potential therapeutic target for atypical teratoid/rhabdoid tumors. BMC Cancer. 2019;19:848. doi: 10.1186/s12885-019-6044-z. PubMed DOI PMC
Reichert F, Rotshenker S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front. Cell Neurosci. 2019;13:90. doi: 10.3389/fncel.2019.00090. PubMed DOI PMC
Prinos P, Lacoste MC, Wong J, Bonneau AM, Georges E. Mutation of cysteine 21 inhibits nucleophosmin/B23 oligomerization and chaperone activity. Int. J. Biochem. Mol. Biol. 2011;2:24–30. PubMed PMC
Holoubek A, et al. Monitoring of nucleophosmin oligomerization in live cells. Methods Appl. Fluoresc. 2018;6:035016. doi: 10.1088/2050-6120/aaccb9. PubMed DOI
Enomoto T, Lindstrom MS, Jin A, Ke H, Zhang Y. Essential role of the B23/NPM core domain in regulating ARF binding and B23 stability. J. Biol. Chem. 2006;281:18463–18472. doi: 10.1074/jbc.M602788200. PubMed DOI
Lakowicz JR. Principles of Fluorescence Spectroscopy. Berlin: Springer; 2006.
Herman P, Lakowicz JR. Lifetime-based imaging. In: Vo-Dingh T, editor. Biomedical Photonics Handbook. New York: CRC Press; 2014. pp. 353–396.
Brodska B, Holoubek A, Otevrelova P, Kuzelova K. Low-dose actinomycin-D induces redistribution of wild-type and mutated nucleophosmin followed by cell death in leukemic cells. J. Cell Biochem. 2016;117:1319–1329. doi: 10.1002/jcb.25420. PubMed DOI
Macville M, et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 1999;59:141–150. PubMed
Röselová P, Obr A, Holoubek A, Grebeňová D, Kuželová K. Adhesion structures in leukemia cells and their regulation by SRC family kinases. Cell Adh. Migr. 2018;12:286–298. doi: 10.1080/19336918.2017.1344796. PubMed DOI PMC
Grebeňová D, et al. PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions. Sci. Rep. 2019;9:17171. doi: 10.1038/s41598-019-53665-6. PubMed DOI PMC
Flis S, Bratek E, Chojnacki T, Piskorek M, Skorski T. Simultaneous inhibition of BCR-ABL1 tyrosine kinase and PAK1/2 serine/threonine kinase exerts synergistic effect against chronic myeloid leukemia cells. Cancers (Basel) 2019;11:1544. doi: 10.3390/cancers11101544. PubMed DOI PMC
Chung EY, et al. PAK kinase inhibition has therapeutic activity in novel preclinical models of adult T-cell leukemia/lymphoma. Clin. Cancer Res. 2019;25:3589–3601. doi: 10.1158/1078-0432.CCR-18-3033. PubMed DOI
Herman P, Holoubek A, Brodska B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim. Biophys. Acta Gen. Subj. 2019;1863:266–277. doi: 10.1016/j.bbagen.2018.10.016. PubMed DOI
Patting M. Standardization and Quality Assurance in Fluorescence Measurements I. Berlin: Springer; 2008. pp. 233–258.
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Interferometric excitation fluorescence lifetime imaging microscopy